Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxide containing supports

The preparation of novel triazole-containing 20-22 membered macrocyclic azacrown ether-thioethers was reported <96JCR(S)182> and the first selective synthetic method fra the synthesis of dicyanotriazolehemiporhyrazines was published <96JOC6446>. 1,2,4-Triazole-containing polyimide beads were prepared and employed as Mo(VI) epoxidation catalyst supports, liie 1,2,4-nitronyl nitroxide 29 was also synthesized and found to have remarkable magnetic properties <96AM60>. [Pg.163]

T. A. Nijhuis, B. J. Huizinga, M. Makkee, and J. A. Moulijn, Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports, Ind. Eng. Chem. Res. 38, 884—891... [Pg.218]

Gas-phase epoxidation of propylene with 02/H2 mixtures was accomplished over Ag1267 or Au1268 catalysts dispersed on TS-1 or other Ti-containing supports and Ti-modified high-silica zeolites.1269 Sodium ions were shown to be beneficial on the selectivity of propylene epoxidation with H202 over titanium silicalite.1270 A chromia-silica catalyst is active in the visible light-induced photoepoxidation of propylene by molecular oxygen.1271... [Pg.525]

The mechanism in Scheme 19 is somewhat speculative, and relies heavily on the assumption that axial attack of solvent is more energetically favorable than equatorial attack of solvent on carbocations similar in structure to 64. However, the stereochemistry of acid-catalyzed hydrolysis of two diastereomeric hexa-hydrophenanthrene 9,10-epoxides (65 and 67) provides support for this proposal. These two epoxides contain transfused cyclohexane moieties that restrict the geometry of each epoxide to a single conformation. Reaction of 65 with H+ yields a single carbocation conformation 66, in which the hydroxyl group is forced to occupy an axial position (Scheme 20). [Pg.78]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

SMPO [styrene monomer propylene oxide] A process for making propylene oxide by the catalytic epoxidation of propylene. The catalyst contains a compound of vanadium, tungsten, molybdenum, or titanium on a silica support. Developed by Shell and operated in The Netherlands since 1978. [Pg.248]


See other pages where Epoxide containing supports is mentioned: [Pg.165]    [Pg.339]    [Pg.339]    [Pg.165]    [Pg.339]    [Pg.339]    [Pg.472]    [Pg.170]    [Pg.243]    [Pg.61]    [Pg.325]    [Pg.389]    [Pg.252]    [Pg.319]    [Pg.243]    [Pg.181]    [Pg.521]    [Pg.190]    [Pg.394]    [Pg.116]    [Pg.248]    [Pg.256]    [Pg.43]    [Pg.615]    [Pg.167]    [Pg.264]    [Pg.80]    [Pg.59]    [Pg.63]    [Pg.66]    [Pg.253]    [Pg.271]    [Pg.285]    [Pg.287]    [Pg.318]    [Pg.19]    [Pg.197]    [Pg.17]    [Pg.417]    [Pg.200]    [Pg.147]    [Pg.83]    [Pg.618]   
See also in sourсe #XX -- [ Pg.339 ]




SEARCH



© 2024 chempedia.info