Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid type enzymes

The study of enzymes is important because every syndietic and degradation reaction in all living cells is controlled and catalyzed by specific enzymes. Many of these reactions are the soluble enzyme-soluble substrate type and are homogeneous in the liquid phase. [Pg.21]

The predominant activity in the study of enzymes has been in relation to biological reactions. This is because specific enzymes have bodi controlled and catalyzed syndietic and degradation reactions in all living cells. Many of diese reactions are homogeneous in the liquid phase (i.e., type 3 reactions). [Pg.832]

There is considerable experimental evidence indicating loss of biological activity of macromolecules such as globular proteins and enzymes at gas-Hquid [57], liquid-solid (Fig. 26) [107] and liquid-liquid [108] interfaces. The extent of inactivation has been shown to be strongly influenced by the prevailing flow field and by, many other factors including the presence and/or absence of additives and contaminants and the type of solid surfaces (Figs. 27 and 28) [107]. [Pg.114]

Among the five different species of Azospirillurn, only A. irakeme shows clearly pectinolytic activity on solid and in liquid medium. Moreover, this species can grow under non-diazotrophic as well as diazotrophic conditions when pectin is the sole carbon source (Khammas and Kaiser, 1991). Khammas and Kaiser (1991) analysed the pectinolytic activity of seven A. irakense isolates, and gave evidence for the presence of two types of pectinolytic enzymes. All strains tested have inducible Ca dependent pectate lyase activity. Six strains, showed also pectin methylesterase activity. So far, none of the corresponding enzymes have been purified. [Pg.378]

In a biphasic medium, two situations are distinguished for the reaction. Biocatalysis occurs at the liquid-liquid interface [42,43] or in the bulk of the aqueous phase [25,27]. Models have been developed for both types, and interaction between mass transfer and enzyme-catalyzed reactions has been also studied. [Pg.556]

Reactions of cell growth or those using immobilized enzymes are instances of gas-liquid-solid reactions. In principle, accordingly, any of the types of reactors described in Section 8.3 could be employed as fermentors. Mostly, however, mechanically agitated tanks are the type adopted. Aeration supplies additional agitation as well as metabolic need, and moreover sweeps away C02 and noxious byproducts. [Pg.821]

As can be concluded from this short description of the factors influencing the overall reaction rate in liquid-solid or gas-solid reactions, the structure of the stationary phase is of significant importance. In order to minimize the transport limitations, different types of supports were developed, which will be discussed in the next section. In addition, the amount of enzyme (operative ligand on the surface of solid phase) as well as its activity determine the reaction rate of an enzyme-catalyzed process. Thus, in the following sections we shall briefly describe different types of chromatographic supports, suited to provide both the high surface area required for high enzyme capacity and the lowest possible internal and external mass transfer resistances. [Pg.171]

Chromatographic fixed-bed reactors consists of a single chromatographic column containing a solid phase on which adsorption and reaction take place. Normally a pulse of reactant is injected into the reactor and, while traveling through the reactor, simultaneous conversion and separation take place (Fig. 3). Since an extensive overview of the models and applications of this type of reactor was presented by Sardin et al. [ 132], only a few recent results will be discussed here. Most of the practical applications have been based on gas-liquid systems, which are not applicable for the enzyme reactions, but a few reactions were also reported in the liquid phase. One of these studies, performed by Mazzotti and co-workers [ 141 ], analyzed the esterification of acetic acid into ethyl acetate according to the reaction ... [Pg.186]

In this chapter chromatographic bioreactors are considered as chromatographic reactors where the reaction is catalyzed by an enzyme or enzyme system, which can be present in pure form or as a cell component. The enzyme can be immobilized on the matrix or it can be dissolved in a liquid phase. Therefore, the reaction can take place in either phase. Several different bioreactions were performed in chromatographic reactors of different types. In the following part some pertinent examples are presented according to their type of reaction. [Pg.196]

The monolithic stirrer reactor (MSR, Figure 2), in which monoliths are used as stirrer blades, is a new reactor type for heterogeneously catalyzed liquid and gas-liquid reactions (6). This reactor is thought to be especially useful in the production of fine chemicals and in biochemistry and biotechnology. In this work, we use cordierite monoliths as stirrer blades for enzyme-catalyzed reactions. Conventional enzyme carriers, including chitosan, polyethylenimine and different are used to functionalize the monoliths. Lipase was... [Pg.40]


See other pages where Liquid type enzymes is mentioned: [Pg.1072]    [Pg.269]    [Pg.2058]    [Pg.419]    [Pg.181]    [Pg.3]    [Pg.866]    [Pg.221]    [Pg.75]    [Pg.24]    [Pg.917]    [Pg.32]    [Pg.119]    [Pg.309]    [Pg.222]    [Pg.449]    [Pg.340]    [Pg.171]    [Pg.85]    [Pg.21]    [Pg.239]    [Pg.113]    [Pg.271]    [Pg.189]    [Pg.766]    [Pg.117]    [Pg.2]    [Pg.197]    [Pg.56]    [Pg.103]    [Pg.419]    [Pg.82]    [Pg.211]    [Pg.227]    [Pg.131]    [Pg.751]    [Pg.221]    [Pg.95]    [Pg.435]   
See also in sourсe #XX -- [ Pg.542 ]




SEARCH



Enzymes types

Liquid types

© 2024 chempedia.info