Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme catalysis, activation energy

Hypothermia slows down enzyme catalysis of enzymes in plasma membranes or organelle membranes, as well as enzymes floating around in the cytosol. The primary reason enzyme activity is decreased is related to the decrease in molecular motion by lowering the temperature as expressed in the Arrhenius relationship (k = where k is the rate constant of the reaction, Ea the activation energy,... [Pg.388]

The important criterion thus becomes the ability of the enzyme to distort and thereby reduce barrier width, and not stabilisation of the transition state with concomitant reduction in barrier height (activation energy). We now describe theoretical approaches to enzymatic catalysis that have led to the development of dynamic barrier (width) tunneUing theories for hydrogen transfer. Indeed, enzymatic hydrogen tunnelling can be treated conceptually in a similar way to the well-established quantum theories for electron transfer in proteins. [Pg.26]

The catalytic specificity of the cycloamyloses has led to their utilization as a model for understanding enzymatic catalysis. It is the authors expectation that the cycloamyloses will continue to serve as an enzyme model as well as a model for designing more efficient catalytic systems. Toward this end, it would seem profitable to pursue the idea that the cycloamyloses may lower the activation energy of a chemical reaction by inducing strain into the substrate. [Pg.259]

Since catalysis is simply making a reaction go faster, it follows that the activation energy of a catalyzed (faster) reaction is lower than the activation energy of an uncatalyzed reaction. It s possible to say, then, that enzymes work by lowering the activation energy of the reaction they catalyze. This is the same as saying that enzymes work because they work. The question is how they lower the activation energy. [Pg.96]

First-order rate constants are used to describe reactions of the type A — B. In the simple mechanism for enzyme catalysis, the reactions leading away from ES in both directions are of this type. The velocity of ES disappearance by any single pathway (such as the ones labeled k2 and k3) depends on the fraction of ES molecules that have sufficient energy to get across the specific activation barrier (hump) and decompose along a specific route. ES gets this energy from collision with solvent and from thermal motions in ES itself. The velocity of a first-order reaction depends linearly on the amount of ES left at any time. Since velocity has units of molar per minute (M/min) and ES has units of molar (M), the little k (first-order rate constant) must have units of reciprocal minutes (1/min, or min ). Since only one molecule of ES is involved in the reaction, this case is called first-order kinetics. The velocity depends on the substrate concentration raised to the first power (v = /c[A]). [Pg.116]

Data of chemical composition 106 Pressure changes 145 Variables related to composition 164 Half iife and initial rate data 177 Temperature variation. Activation energy Homogeneous catalysis 202 Enzyme and solid catalysis 210 Flow reactor data 222 CSTR data 231 Complex reactions 238... [Pg.104]

Metal Ion Catalysis Metals, whether tightly bound to the enzyme or taken up from solution along with the substrate, can participate in catalysis in several ways. Ionic interactions between an enzyme-bound metal and a substrate can help orient the substrate for reaction or stabilize charged reaction transition states. This use of weak bonding interactions between metal and substrate is similar to some of the uses of enzyme-substrate binding energy described earlier. Metals can also mediate oxidation-reduction reactions by reversible changes in the metal ion s oxidation state. Nearly a third of all known enzymes require one or more metal ions for catalytic activity. [Pg.201]


See other pages where Enzyme catalysis, activation energy is mentioned: [Pg.18]    [Pg.105]    [Pg.207]    [Pg.207]    [Pg.207]    [Pg.161]    [Pg.681]    [Pg.211]    [Pg.388]    [Pg.62]    [Pg.431]    [Pg.8]    [Pg.52]    [Pg.22]    [Pg.41]    [Pg.25]    [Pg.74]    [Pg.161]    [Pg.225]    [Pg.160]    [Pg.87]    [Pg.36]    [Pg.15]    [Pg.13]    [Pg.66]    [Pg.95]    [Pg.172]    [Pg.90]    [Pg.57]    [Pg.120]    [Pg.141]    [Pg.313]    [Pg.89]    [Pg.197]    [Pg.199]    [Pg.171]    [Pg.173]    [Pg.222]   
See also in sourсe #XX -- [ Pg.93 , Pg.94 ]




SEARCH



Catalysis activated

Catalysis activity

Catalysis enzymic

Energy enzyme

Enzyme catalysis, activation energy activator

Enzyme catalysis, activation energy activator

Enzyme catalysis, activation energy inhibitor

Enzyme catalysis, activation energy initial reaction rate

Enzyme catalysis, activation energy nucleophilic reaction

Enzyme catalysis, activation energy reaction mechanism

Enzyme catalysis, activation energy reaction rate

Enzymes activation energy

Enzymes catalysis

© 2024 chempedia.info