Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enols from ketones

POLY (ENOL-KETONE) FROM THE OXIDATION OF POLY(VINYL ALCOHOL)... [Pg.75]

Our experience to this point has been that C—H bonds are not very acidic Com pared with most hydrocarbons however aldehydes and ketones have relatively acidic protons on their a carbon atoms pA s for enolate formation from simple aldehydes and ketones are m the 16 to 20 range... [Pg.764]

Two techniques have been described for producing trimethylsilyl enol ethers from aldehydes or ketones (10) reaction of (CH2)2SiCl and (C2H3)2N in DMF and reaction of LiN(C2H3)2, which generates enolate ions in the presence of... [Pg.71]

The procedure described illustrates a general method for the preparation of o ,j3-unsaturated aldehydes and ketones from the enol ethers of 3-dicarbonyl compounds. [Pg.16]

The idea of kinetic versus thermodynamic control can be illustrated by discussing briefly the case of formation of enolate anions from unsymmetrical ketones. This is a very important matter for synthesis and will be discussed more fully in Chapter 1 of Part B. Most ketones, highly symmetric ones being the exception, can give rise to more than one enolate. Many studies have shown tiiat the ratio among the possible enolates that are formed depends on the reaction conditions. This can be illustrated for the case of 3-methyl-2-butanone. If the base chosen is a strong, sterically hindered one and the solvent is aptotic, the major enolate formed is 3. If a protic solvent is used or if a weaker base (one comparable in basicity to the ketone enolate) is used, the dominant enolate is 2. Enolate 3 is the kinetic enolate whereas 2 is the thermodynamically favored enolate. [Pg.216]

The radicals that are formed from the enolate in this process are rapidly destroyed so that only the stable semidione species remains detectable for EPR study. Semidiones can also be generated oxidatively from ketones by reaction with oxygen in the presence of base. The diketone is presumably generated oxidatively and then reduced to the semidione via reduction by the enolate derived from the original ketone. [Pg.682]

Similarly, with two equivalents of DDQ, A -3-ketones give A -3-ketones in good yield ( 70%), without isolation of the intermediate A -3-ke-tone/ These trienones are also obtainable directly from A -3-alcohols with three equivalents of DDQ in refluxing dioxane (20 hr), and the overall yield ( 50%) compares favorably with less direct methods. The direct formation of A -3-ketones from A -3-ketones with acid catalysis is not successful. Enol derivatives have proven to be useful for the preparation... [Pg.311]

Reaction of unsymmetrical ketones with strong bases may lead to two different enolates. Whether the eventual product derives from the more stable ( thermodynamie ) enolate, or from the more rapidly formed ( kinetie ) enolate, depends on reaetion conditions. [Pg.164]

The first step of the Robinson annulation is simply a Michael reaction. An enamine or an enolate ion from a jS-keto ester or /3-diketone effects a conjugate addition to an a-,/3-unsaturated ketone, yielding a 1,5-diketone. But as we saw in Section 23.6,1,5-diketones undergo intramolecular aldol condensation to yield cyclohexenones when treated with base. Thus, the final product contains a six-membered ring, and an annulation has been accomplished. An example occurs during the commercial synthesis of the steroid hormone estrone (figure 23.9). [Pg.899]

It was anticipated that two of the three stereochemical relationships required for intermediate 12 could be created through reaction of the boron enolate derived from imide 21 with a-(benzyloxy)ace-taldehyde 24. After conversion of the syn aldol adduct into enone 23, a substrate-stereocontrolled 1,2-reduction of the C-5 ketone car-... [Pg.490]

The major adduct from this reaction is consistent with approach of the ketone from the least-hindered face of an antipcriplanar enolate of E geometry such as transition state A or B. [Pg.541]

The application of auxiliary control in the asymmetric Michael addition of chiral enolates derived from ketones is rare the only example known is the use of (27 ,37 )-2,3-butancdiol as an auxiliary. The ketal of (27 ,37 )-2,3-butanediol with 3-methyl-l,2-cyclohexanedione reacts with 3-buten-2-one using as base a catalytic amount of sodium ethoxide in ethanol195. [Pg.975]

This derivative is useful for determining the presence and number of keto groups as well as for protecting the ketone from enolization. Some diketones that polymerize readily, such as 2,3-butanedione. should be freshly distilled and the methoxime derivatives should be prepared. [Pg.89]

Enolates derived from various imino compounds have been sulfinylated in reactions analogous to those shown by equations (14) and (15). Some representative examples are shown in equations 16-18. Here again, these compounds have been utilized in asymmetric syntheses. Addition of sulfinate ester 19 to a THF suspension of a-lithio-N,N-dimethylhydrazones, derived from readily available hydrazones of aldehydes and ketones, leads to a-sulfinylhydrazones in good yield, e.g. 53 and 54 (equations 16 and 17)85,86. Compounds 53 and 54 were obtained in a 95/5 and 75/25 E/Z ratio, respectively. The epimer ratio of compound 53 was 55/45. Five other examples were reported with various E/Z and epimeric ratios. [Pg.68]

An interesting strategy for the diastereoselective synthesis of five-membered carbocycles was achieved by the reaction of alkenylcarbene complexes and lithium enolates derived from simple methyl ketones [79]. The use of more or less coordinating solvents (THF or Et20) or the presence of cosolvents such as PMDTA allows the selective synthesis of one or the other diastereoisomer of the final cyclopentene derivative (Scheme 32). [Pg.83]

Another example of a [4S+1C] cycloaddition process is found in the reaction of alkenylcarbene complexes and lithium enolates derived from alkynyl methyl ketones. In Sect. 2.6.4.9 it was described how, in general, lithium enolates react with alkenylcarbene complexes to produce [3C+2S] cycloadducts. However, when the reaction is performed using lithium enolates derived from alkynyl methyl ketones and the temperature is raised to 65 °C, a new formal [4s+lcj cy-clopentenone derivative is formed [79] (Scheme 38). The mechanism proposed for this transformation supposes the formation of the [3C+2S] cycloadducts as depicted in Scheme 32 (see Sect. 2.6.4.9). This intermediate evolves through a retro-aldol-type reaction followed by an intramolecular Michael addition of the allyllithium to the ynone moiety to give the final cyclopentenone derivatives after hydrolysis. The role of the pentacarbonyltungsten fragment seems to be crucial for the outcome of this reaction, as experiments carried out with isolated intermediates in the absence of tungsten complexes do not afford the [4S+1C] cycloadducts (Scheme 38). [Pg.87]

Seven-membered carbocycles are also available from the reaction of alkenylcarbene complexes of chromium and lithium enolates derived from methyl vinyl ketones [79b] (Scheme 65). In this case, the reaction is initiated by the 1,2-addition of the enolate to the carbene complex. Cyclisation induced by a [1,2]-migration of the pentacarbonylchromium group and subsequent elimination of the metal fragment followed by hydrolysis leads to the final cyclo-heptenone derivatives (Scheme 65). [Pg.103]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

The coupling of a secondary alcohol 1 with a primary alcohol 2 is achieved by the temporary removal of from each substrate which generates the ketone 3 and aldehyde 4 intermediates. A crossed aldol condensation occurs under the reaction conditions by the enolate derived from ketone 3 undergoing nucleophilic addition... [Pg.253]

NHC-promoted enolate formation from an enal, followed by a desymmetrising aldol event to generate P-lactones and loss of CO, has been exploited by Scheidt and co-workers to generate functionalised cyclopentenes 240 in high ee from enal substrates 238 (Scheme 12.52) [94]. Interestingly, the use of alkyl ketones in this reaction manifold allows the isolation of the p-lactone intermediates with acyclic diketones, P-lactones 239 are formed with the R group anti- to the tertiary alkox-ide, while with cyclic diketones the P-lactone products have the R group with a syn relationship to the alkoxide [95]. [Pg.290]

Regioselectivity and Stereoselectivity in Enolate Formation from Ketones and Esters... [Pg.5]


See other pages where Enols from ketones is mentioned: [Pg.77]    [Pg.79]    [Pg.81]    [Pg.84]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.84]    [Pg.103]    [Pg.108]    [Pg.160]    [Pg.152]    [Pg.379]    [Pg.387]    [Pg.291]    [Pg.86]    [Pg.1281]    [Pg.76]    [Pg.191]    [Pg.233]    [Pg.246]    [Pg.454]    [Pg.454]    [Pg.490]    [Pg.490]    [Pg.650]    [Pg.296]    [Pg.470]    [Pg.1027]   
See also in sourсe #XX -- [ Pg.471 , Pg.472 ]




SEARCH



Enol ketones

Enols ketonization

Ketone enolate

Ketone enolates

Ketones enolates from

Ketones enolization

Ketonization-enolization

© 2024 chempedia.info