Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolether radical cation

Enolether radical cation 7, generated in a double strand, oxidizes selectively a nearby guanine base (G) in the same double strand [3, 4]. This elec-... [Pg.38]

Anodic C, C-coupling is a very powerful tool to synthesize cyclic compounds with high regio- and stereoselectivity. It involves inter- and intramolecular coupling of arylolefins, dienes, enolethers, phenol ethers, and aromatic amines and often opens a quick entry into complex natural products in a few steps. Although the mechanism is fully established in only a few cases, it does appear to involve the coupling of two radical cations at the site of their highest radical density and is further controlled by steric constraints. This important type of reaction is reviewed in Chap. 5 and in Refs. [89, 90]. [Pg.409]

Oxidation of arylolefins, enolethers, or dienes yields intermolecular homocoupling products in moderate to good yield (see Sect. 13.2.1.4) however, no pronounced diastereoselectivity was observed. This is also due to the fact that the coupling sites do not tolerate substituents that would make up a prostereogenic center. Furthermore, the fairly stable cations of the dimerized radical cation solvolyze stereounselectively. The same holds for the intermolecular coupling of aromatic compounds, in... [Pg.423]

In a first successful approach, Kochi, Renzepis, and co-workers [41] chose EDA complexes of 9-cyanoanthracene (14) and tetracyanoethene (TCNE, 15) since their charge transfer (CT) absorption bands are well separated from the absorption bands of the monomers. Excitation with a 25 ps laser pulse produced two transient absorption bands near 460 and 750 nm, which decayed simultaneously within ca. 60 ps. As was shown in the chloranil-enolether system 9—10, cf. Fig. 6), the transients can be identified with the arene radical cation (14a+ ) and the olefin radical anion (/5- ), respectively (Scheme 5). [Pg.230]

Bach and coworkers investigated the photocycloaddition of 7V-acyl, 7V-alkyl enamines 125 with benzaldehyde [125]. The 3-amido oxetanes 126 were formed with excellent regioselectivity (analogous to reactions with enolethers—vide supra) and good diastereoselectivity (Sch. 41). Enamines, not deactivated by acylation at the nitrogen atom are poor substrates for Paterno-Buchi reactions due to preferred electron transfer reactivity (formation of the corresponding enamine radical cation and subsequent reactions). [Pg.119]

Cycloadditions only proceeding after electron transfer activation via the radical cation of one partner are illustrated by the final examples. According to K. Mizono various bis-enolethers tethered by long chains (polyether or alkyl) can be cyclisized to bicyclic cyclobutanes using electron transfer sensitizer like dicyanonaphthalene or dicyano-anthracene. Note that this type of dimerization starting from enol ethers are not possible under triplet sensitization or by direct irradiation. Only the intramolecular cyclization ci the silane-bridged 2>. s-styrene can be carried out under direct photolysis. E. Steckhan made use of this procedure to perform an intermolecular [4+2] cycloaddition of indole to a chiral 1,3-cyclohexadiene. He has used successfully the sensitizer triphenylpyrylium salt in many examples. Here, the reaction follows a general course which has been developed Bauld and which may be called "hole catalyzed Diels-Alder reaction". [Pg.205]

The success of the strategy is further applied for the synthesis of carbo-and spiro-aimulated aromatic compounds [146,147] by the intramolecular cyclization of silyl enolethers to PET-generated arene radical cations. Two types of carbocyclic compounds (170 and 173), varying in ring sizes, may be synthesized [146] starting from the same ketone (i.e., 169), as two types of silyl enol ethers can be produced using either thermodynamic or kinetic enolisation procedures. The core spiro structure (177) of the anticancer antibiotic ffed-ericamycin is also prepared [147] by the PET cyclization of 176 (Scheme 36). [Pg.278]


See other pages where Enolether radical cation is mentioned: [Pg.761]    [Pg.265]    [Pg.143]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Enolether

© 2024 chempedia.info