Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates palladium-catalyzed

A synthetically useful virtue of enol triflates is that they are amenable to palladium-catalyzed carbon-carbon bond-forming reactions under mild conditions. When a solution of enol triflate 21 and tetrakis(triphenylphosphine)palladium(o) in benzene is treated with a mixture of terminal alkyne 17, n-propylamine, and cuprous iodide,17 intermediate 22 is formed in 76-84% yield. Although a partial hydrogenation of the alkyne in 22 could conceivably secure the formation of the cis C1-C2 olefin, a chemoselective hydrobora-tion/protonation sequence was found to be a much more reliable and suitable alternative. Thus, sequential hydroboration of the alkyne 22 with dicyclohexylborane, protonolysis, oxidative workup, and hydrolysis of the oxabicyclo[2.2.2]octyl ester protecting group gives dienic carboxylic acid 15 in a yield of 86% from 22. [Pg.458]

The key step in a short and efficient synthesis of pleraplysillin-1 (127) is the palladium-catalyzed cross-coupling of vinylstannane 125 with vinyl triflate 126 (see Scheme 33). This synthesis is noteworthy in two respects. First, vinyl triflate 126 is generated regio-specifically from the kinetic enolate arising from a conjugate reduction of enone 124 the conjugate reduction of an enone is, in fact, a... [Pg.594]

Chiral phosphinous amides have been found to act as catalysts in enantio-selective allylic alkylation. Horoi has reported that the palladium-catalyzed reaction of ( )-l,3-diphenyl-2-propenyl acetate with the sodium enolate of dimethyl malonate in the presence of [PdCl(7i-allyl)]2 and the chiral ligands 45 gave 46 in 51-94% yields and up to 97% ee (Scheme 38). It is notorious that when the reaction is carried out with the chiral phosphinous amide (S)-45a, the product is also of (S) configuration, whereas by using (R)-45b the enantiomeric (R) product is obtained [165]. [Pg.97]

Palladium-Catalyzed Arylation of Enolates. Very substantial progress has been made in the use of Pd-catalyzed cross coupling for arylation of enolates and enolate equivalents. This reaction provides an important method for arylation of enolates, which is normally a difficult transformation to accomplish.171 A number of phosphine ligands have been found to promote these reactions. Bulky trialkyl phosphines such as /n. v-(/-butyl)phosphinc with a catalytic amount of Pd(OAc)2 results in phenylation of the enolates of aromatic ketones and diethyl malonate.172... [Pg.728]

To investigate the feasibility of employing 3-oxidopyridinium betaines as stabilized 1,3-dipoles in an intramolecular dipolar cycloaddition to construct the hetisine alkaloid core (Scheme 1.8, 77 78), a series of model cycloaddition substrates were prepared. In the first (Scheme 1.9a), an ene-nitrile substrate (i.e., 83) was selected as an activated dipolarophile functionality. Nitrile 66 was subjected to reduction with DIBAL-H, affording aldehyde 79 in 79 % yield. This was followed by reductive amination of aldehyde x with furfurylamine (80) to afford the furan amine 81 in 80 % yield. The ene-nitrile was then readily accessed via palladium-catalyzed cyanation of the enol triflate with KCN, 18-crown-6, and Pd(PPh3)4 in refluxing benzene to provide ene-nitrile 82 in 75 % yield. Finally, bromine-mediated aza-Achmatowicz reaction [44] of 82 then delivered oxidopyridinium betaine 83 in 65 % yield. [Pg.11]

Intramolecular palladium catalyzed thio-enolate S-arylation has been used in a route to a set of fused benzo[ ]thiophenes, as illustrated by the conversion of the substrate 10 into the product 11 <06T11513>. [Pg.114]

Several examples of transition metal catalysis for the synthesis of piperidines appeared this year. Palladium catalyzed intramolecular urethane cyclization onto an unactivated allylic alcohol was described as the key step in the stereoselective synthesis of the azasugar 1-deoxymannojirimycin . A new synthetic entry into the 2-azabicyclo[3.3.1]nonane framework was accomplished through a palladium mediated intramolecular coupling of amine tethered vinyl halides and ketone enolates in moderate yields . A palladium catalyzed decarboxylative carbonylation of 5-vinyl... [Pg.253]

In relation to palladium enolates, Yamamoto and co-workers reported palladium-catalyzed addition of malononi-trile derivatives to imines or aldehydes (Equation (110)).466,466a Oxidative addition of the C-H bond of the malononitrile to Pd(0) followed by insertion of an electrophile is proposed. [Pg.467]

The Alder-ene cyclization of allylic silyl ethers represents a clever use of cycloisomerization chemistry, as the enol ether products can be easily unmasked to yield aldehydes. Palladium-catalyzed cycloisomerization of 1,6- and 1,7-enynes containing an allylic oxygen most often gives rise to 1,3-dienes (see Section 10.12.4.1). However, enynes of type 63 underwent facile Alder-ene cyclization to the corresponding five- or six-membered rings (Equation (40)) using both [CpRu(MeCN)3]PF6 41 and the Cp analog ([Cp Ru(MeCN)3]PF6, 64).53... [Pg.573]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

Palladium-catalyzed bis-silylation of a,/ -unsaturated ketones using bis(disilanyl)dithiane affords seven-membered ring silyl enol ethers in high yields via 1,4-addition (Equation (48)).8,97 Application of this reaction to a,/ -unsaturated esters and nitriles gives five-membered ring 1,2-addition products in good yields (Equation (49)). [Pg.746]

Ceric ammonium nitrate promoted oxidative addition of silyl enol ethers to 1,3-butadiene affords 1 1 mixtures of 4-(/J-oxoalkyl)-substituted 3-nitroxy-l-butene and l-nitroxy-2-butene27. Palladium(0)-catalyzed alkylation of the nitroxy isomeric mixture takes place through a common ij3 palladium complex which undergoes nucleophilic attack almost exclusively at the less substituted allylic carbon. Thus, oxidative addition of the silyl enol ether of 1-indanone to 1,3-butadiene followed by palladium-catalyzed substitution with sodium dimethyl malonate afforded 42% of a 19 1 mixture of methyl ( )-2-(methoxycarbonyl)-6-(l-oxo-2-indanyl)-4-hexenoate (5) and methyl 2-(methoxycarbonyl)-4-(l-oxo-2-indanyl)-3-vinylbutanoate (6), respectively (equation 12). [Pg.698]

On the other hand, the use of [Rh(CO)2Cl]2 as a catalyst results in ring opening of the siloxycyclopropanes 13 to the silyl enol ethers 14 with high stereoselectivity [10]. The 2-siloxyrhodacyclobutane 15a is proposed to undergo j8-elimination to give jr-allylrhodium 16a followed by reductive elimination to the silyl enol ether 14a. 1-Trimethylsiloxybicyclo[n.l.0]alkanes serve as / -metallo-carbonyl compounds via desilylation with a variety of transition metals [11]. The palladium-catalyzed reaction of the siloxycyclopropanes 17 under carbon monoxide in chloroform provides a route to the 4-keto pimelates 18. In the presence of aryl triflates, the 1,4-dicarbonyl compounds 19 are... [Pg.102]

The method involves a regioselective, trans-diastereoselective, and enantioselective three-component coupling, as shown in Scheme 7.26. In this case, the zinc enolate resulting from the 1,4-addition is trapped in a palladium-catalyzed allyla-tion [64] to afford trans-2,3-disubstituted cyclohexanone 96. Subsequent palladium-catalyzed Wacker oxidation [82] yields the methylketone 97, which in the presence of t-BuOK undergoes an aldol cyclization. This catalytic sequence provides the 5,6-(98) and 5,7- (99) annulated structures with ees of 96%. [Pg.253]

The first iridium catalysts for allylic substitution were published in 1997. Takeuchi showed that the combination of [fr(COD)Cl]2 and triphenylphosphite catalyzes the addition of malonate nucleophiles to the substituted terminus of t -allyliridium intermediates that are generated from allylic acetates. This selectivity for attack at the more substituted terminus gives rise to the branched allylic alkylation products (Fig. 4), rather than the linear products that had been formed by palladium-catalyzed allylic substitution reactions at that time [7]. The initial scope of iridium-catalyzed allylic substitution was also restricted to stabilized enolate nucleophiles, but it was quickly expanded to a wide range of other nucleophiles. [Pg.173]

Palladium catalyzed cross coupling of arylboronic acid to nonracemic trifluoromethylsulfonyl and fluorosulfonyl enol ethers is one of the key steps in the synthesis two endothelin receptor antagonists, SB 209670 and SB 217242, which have been clinically evaluated for several illnesses including hypertension, ischemia, stroke and others [37] (Scheme 6.14). [Pg.172]

Palladium-catalyzed conversion of enol silanes to enones, also known as the Saegusa enone synthesis. [Pg.515]

Palladium-catalyzed reactions are the most studied. Eor example, 5-tributylstannyl-l,4-dioxene 130 underwent a cross-coupling reaction with the enol ttiflate 131 in refluxing THF in the presence of LiCl and a catalytic amount of Pd(PPh3)4 (Equation 19) <1996TL7013>. [Pg.879]

A similar palladium-catalyzed cyclization procedure has recently been developed which involves enol ethers capable of (3-H elimination.373 Significant evidence has been accumulated suggesting that an oxa-ir-allyl complex is not an intermediate in these reactions, but that it is better characterized as an enolate addition to a Pdn-alkene complex.376 377 Synthetic applications of this reaction have also appeared.376-379... [Pg.614]

Palladium-Catalyzed Reduction of Enol Trifluoromethanesulfonates to Alkenes Cholesta-3,5-diene... [Pg.275]


See other pages where Enolates palladium-catalyzed is mentioned: [Pg.87]    [Pg.593]    [Pg.649]    [Pg.174]    [Pg.256]    [Pg.267]    [Pg.569]    [Pg.218]    [Pg.109]    [Pg.326]    [Pg.571]    [Pg.27]    [Pg.34]    [Pg.87]    [Pg.87]    [Pg.24]    [Pg.197]    [Pg.163]    [Pg.160]    [Pg.7]    [Pg.189]    [Pg.777]    [Pg.791]    [Pg.744]    [Pg.783]    [Pg.47]    [Pg.31]    [Pg.183]    [Pg.258]   
See also in sourсe #XX -- [ Pg.712 , Pg.713 , Pg.714 , Pg.728 , Pg.729 ]




SEARCH



Allyl enol carbonates palladium-catalyzed

Ei-ichi Negishi 2 Palladium-Catalyzed Cross-Coupling nvolving 3-Hetero-Substituted Compounds Other than Enolates

Enolates palladium-catalyzed alkylation

Enolates palladium-catalyzed regioselective

Palladium enolate

Palladium enolates

Palladium-Catalyzed Formylation of Enol Triflates and lodoalkenes

Palladium-catalyzed arylation enolates

© 2024 chempedia.info