Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates lithium diisopropylamide

To obtain complete conversion of ketones to enolates, it is necessary to use aprotic solvents so that solvent deprotonation does not compete with enolate formation. Stronger bases, such as amide anion ( NH2), the conjugate base of DMSO (sometimes referred to as the dimsyl anion),2 and triphenylmethyl anion, are capable of effecting essentially complete conversion of a ketone to its enolate. Lithium diisopropylamide (LDA), which is generated by addition of w-butyllithium to diisopropylamine, is widely used as a strong... [Pg.3]

No aldol reaction is possible until the LDA is consumed and a second carbonyl compound is added. This procedure is a convenient way to do crossed aldol reactions in a controlled fashion. When there is a choice, LDA forms the more accessible, less substituted enolate. Lithium diisopropylamide is a large, sterically encumbered base and removes a proton from the sterically less hindered position to give what is called the kinetic enolate. Notice that this reaction can be used to generate two new stereocenters adjacent to each other. This procedure is very useful and has received considerable attention in the past 30 years. [Pg.985]

Section 21 10 It is possible to generate ester enolates by deprotonation provided that the base used is very strong Lithium diisopropylamide (LDA) is often used for this purpose It also converts ketones quantitatively to their enolates... [Pg.907]

Common reagents such as lithium diisopropylamide (LDA see Chapter 11, Problem 5) react with carbonyl compounds to yield lithium enolate salts and diisopropylamine, e.g., for reaction with cyclohexanone. [Pg.165]

In general the reaction of an aldehyde with a ketone is synthetically useful. Even if both reactants can form an enol, the a-carbon of the ketone usually adds to the carbonyl group of the aldehyde. The opposite case—the addition of the a-carbon of an aldehyde to the carbonyl group of a ketone—can be achieved by the directed aldol reaction The general procedure is to convert one reactant into a preformed enol derivative or a related species, prior to the intended aldol reaction. For instance, an aldehyde may be converted into an aldimine 7, which can be deprotonated by lithium diisopropylamide (EDA) and then add to the carbonyl group of a ketone ... [Pg.6]

Because carbonyl compounds are only weakly acidic, a strong base is needed for enolate ion formation. If an alkoxide such as sodium ethoxide is used as base, deprotonation takes place only to the extent of about 0. l% because acetone is a weaker acid than ethanol (pKa - 16). If, however, a more powerful base such as sodium hydride (NaH) or lithium diisopropylamide ILiNO -CjHy ] is used, a carbonyl compound can be completely converted into its enolate ion. Lithium diisopropylamide (LDA), which is easily prepared by reaction of the strong base butyllithium with diisopropylamine, is widely used in the laboratory as a base for preparing enolate ions from carbonyl compounds. [Pg.851]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

There is no simple answer to this question, but the exact experimental conditions usually have much to do with the result. Alpha-substitution reactions require a full equivalent of strong base and are normally carried out so that the carbonyl compound is rapidly and completely converted into its enolate ion at a low temperature. An electrophile is then added rapidly to ensure that the reactive enolate ion is quenched quickly. In a ketone alkylation reaction, for instance, we might use 1 equivalent of lithium diisopropylamide (LDA) in lelrahydrofuran solution at -78 °C. Rapid and complete generation of the ketone enolate ion would occur, and no unreacled ketone would be left so that no condensation reaction could take place. We would then immediately add an alkyl halide to complete the alkylation reaction. [Pg.881]

Still s synthesis of monensin (1) is based on the assembly and union of three advanced, optically active intermediates 2, 7, and 8. It was anticipated that substrate-stereocontrolled processes could secure vicinal stereochemical relationships and that the coupling of the above intermediates would establish remote stereorelationships. Scheme 3 describes Still s synthesis of the left wing of monensin, intermediate 2. This construction commences with an aldol reaction between the (Z) magnesium bromide enolate derived from 2-methyl-2-trimethylsilyloxy-3-pentanone (21) and benzyloxymethyl-protected (/ )-/ -hydroxyisobutyraldehyde (10).2° The use of intermediate 21 in aldol reactions was first reported by Heathcock21 and, in this particular application, a 5 1 mixture of syn aldol diastereoisomers is formed in favor of the desired aldol adduct 22 (85% yield). The action of lithium diisopropylamide (LDA) and magnesium(n) bromide on 21 affords a (Z) magnesium enolate that... [Pg.235]

When 2-lithio-2-(trimethylsilyl)-l,3-dithiane,9 formed by deprotonation of 9 with an alkyllithium base, is combined with iodide 8, the desired carbon-carbon bond forming reaction takes place smoothly and gives intermediate 7 in 70-80% yield (Scheme 2). Treatment of 7 with lithium diisopropylamide (LDA) results in the formation of a lactam enolate which is subsequently employed in an intermolecular aldol condensation with acetaldehyde (6). The union of intermediates 6 and 7 in this manner provides a 1 1 mixture of diastereomeric trans aldol adducts 16 and 17, epimeric at C-8, in 97 % total yield. Although stereochemical assignments could be made for both aldol isomers, the development of an alternative, more stereoselective route for the synthesis of the desired aldol adduct (16) was pursued. Thus, enolization of /Mactam 7 with LDA, as before, followed by acylation of the lactam enolate carbon atom with A-acetylimidazole, provides intermediate 18 in 82% yield. Alternatively, intermediate 18 could be prepared in 88% yield, through oxidation of the 1 1 mixture of diastereomeric aldol adducts 16 and 17 with trifluoroacetic anhydride (TFAA) in... [Pg.253]

Very high levels of induced diastereoselectivity are also achieved in the reaction of aldehydes with the titanium enolate of (5)-l-rerr-butyldimethylsiloxy-1-cyclohexyl-2-butanone47. This chiral ketone reagent is deprotonated with lithium diisopropylamide, transmetalated by the addition of triisopropyloxytitunium chloride, and finally added to an aldehyde. High diastereoselectivities are obtained when excess of the titanium reagent (> 2 mol equiv) is used which prevents interference by the lithium salt formed in the transmetalation procedure. Under carefully optimized conditions, diastereomeric ratios of the adducts range from 70 1 to >100 1. [Pg.465]

Stereodivergent aldol addition is also possible when (.S,)-5,5-dimethyl-4-trimethylsiloxy-3-hexanonc (16) is chosen as the enolate precursor. Thus, the lithium enolate generated from 16 by treatment with lithium diisopropylamide and tetramethylethylenediamine leads predomi-... [Pg.469]

Table 10 shows examples of. vvn-sclcctive enolate condensations with imines using different types of enolates. All enolates used in these experiments were prepared based on the corresponding lithium enolate by treatment with different Lewis acids, where the lithium enolates themselves were generated with lithium diisopropylamide (LDA) at — 78 °C. [Pg.760]

When the enolate of an ,) - or a /j,y-unsatunited amide is used, it can react in an a or in a y fashion with a,/i-unsaturated esters, however, in most cases only a-selectivity is observed. Using l-(l-oxo-2-butenyl)pyrrolidine and lithium diisopropylamide at — 78 °C in a THF/HM-I A mixture (1 1), high. syn-selective formation of 3-alkyl-5-oxo-5-(l-pyrrolidinyl)-4-vinylpen-tanoates is achieved78,381 382. Related syn- or anti-selective additions of a vinylogous urethane also are known79. [Pg.962]

When 2,2-dimethylpropanal is used to prepare the azomethine moiety, the corresponding azaallyl anion may be obtained when l,8-diazabicyclo[5.4.0]undec-7-ene/lithium bromide is used as base. The subsequent addition to various enones or methyl ( )-2-butenoate proceeds with anti selectivity, presumably via a chelated enolate. However, no reaction occurs when triethylamine is used as the base, whereas lithium diisopropylamide as the base leads to the formation of a cycloadduct, e.g., dimethyl 5-isopropyl-3-methyl-2,4-pyrrolidinedicarboxylate using methyl ( )-2-butenoate as the enone84 89,384. [Pg.963]

An excellent synthetic method for asymmetric C—C-bond formation which gives consistently high enantioselectivity has been developed using azaenolates based on chiral hydrazones. (S)-or (/ )-2-(methoxymethyl)-1 -pyrrolidinamine (SAMP or RAMP) are chiral hydrazines, easily prepared from proline, which on reaction with various aldehydes and ketones yield optically active hydrazones. After the asymmetric 1,4-addition to a Michael acceptor, the chiral auxiliary is removed by ozonolysis to restore the ketone or aldehyde functionality. The enolates are normally prepared by deprotonation with lithium diisopropylamide. [Pg.975]

Oxo esters are accessible via the diastereoselective 1,4-addition of chiral lithium enamine 11 as Michael donor. The terr-butyl ester of L-valine reacts with a / -oxo ester to form a chiral enamine which on deprotonation with lithium diisopropylamide results in the highly chelated enolate 11. Subsequent 1,4-addition to 2-(arylmethylene) or 2-alkylidene-l,3-propanedioates at — 78 °C, followed by removal of the auxiliary by hydrolysis and decarboxylation of the Michael adducts, affords optically active -substituted <5-oxo esters232 (for a related synthesis of 1,5-diesters, see Section 1.5.2.4.2.2.1.). In the same manner, <5-oxo esters with contiguous quaternary and tertiary carbon centers with virtually complete induced (> 99%) and excellent simple diastereoselectivities (d.r. 93 7 to 99.5 0.5) may be obtained 233 234. [Pg.984]

The enol acetates, in turn, can be prepared by treatment of the parent ketone with an appropriate reagent. Such treatment generally gives a mixture of the two enol acetates in which one or the other predominates, depending on the reagent. The mixtures are easily separable. An alternate procedure involves conversion of a silyl enol ether (see 12-22) or a dialkylboron enol ether (an enol borinate, see p. 560) to the corresponding enolate ion. If the less hindered enolate ion is desired (e.g., 126), it can be prepared directly from the ketone by treatment with lithium diisopropylamide in THE or 1,2-dimethoxyethane at —78°C. ... [Pg.554]

Further variations of the Claisen rearrangement protocol were also utilized for the synthesis of allenic amino acid derivatives. Whereas the Ireland-Claisen rearrangement led to unsatisfactory results [133b], a number of variously substituted a-allenic a-amino acids were prepared by Kazmaier [135] by chelate-controlled Claisen rearrangement of ester enolates (Scheme 18.47). For example, deprotonation of the propargylic ester 147 with 2 equiv. of lithium diisopropylamide and transmetallation with zinc chloride furnished the chelate complex 148, which underwent a highly syn-stereoselective rearrangement to the amino acid derivative 149. [Pg.1027]

Ethyl 3-oxoalkanoates when not commercially available can be prepared by the acylation of tert-butyl ethyl malonate with an appropriate acid chloride by way of the magnesium enolate derivative. Hydrolysis and decarboxylation in acid solution yields the desired 3-oxo esters [59]. 3-Keto esters can also be prepared in excellent yields either from 2-alkanone by condensation with ethyl chloroformate by means of lithium diisopropylamide (LDA) [60] or from ethyl hydrogen malonate and alkanoyl chloride usingbutyllithium [61]. Alternatively P-keto esters have also been prepared by the alcoholysis of 5-acylated Mel-drum s acid (2,2-dimethyl-l,3-dioxane-4,6-dione). The latter are prepared in almost quantitative yield by the condensation of Meldrum s acid either with an appropriate fatty acid in the presence of DCCI and DMAP [62] or with an acid chloride in the presence of pyridine [62] (Scheme 7). [Pg.306]

The kinetic enolization of esters with amide bases such as lithium diisopropylamide (LDA) and the resultant aldol condensations with representative aldehydes have been investigated by several groups (2,32,33). The enolate stereochemical assignments were determined by silylation in direct analogy to studies reported by Ireland (34). The preponderance of (E )-enolate observed with LDA (THF) in these... [Pg.26]


See other pages where Enolates lithium diisopropylamide is mentioned: [Pg.296]    [Pg.296]    [Pg.903]    [Pg.389]    [Pg.30]    [Pg.477]    [Pg.903]    [Pg.60]    [Pg.76]    [Pg.330]    [Pg.594]    [Pg.618]    [Pg.490]    [Pg.510]    [Pg.958]    [Pg.963]    [Pg.786]    [Pg.187]    [Pg.115]    [Pg.73]    [Pg.99]   
See also in sourсe #XX -- [ Pg.224 , Pg.230 , Pg.231 ]




SEARCH



Additives, enolate synthesis, lithium diisopropylamide

Diisopropylamide

Enolate lithium

Enolates lithium

Enolates metalations, lithium diisopropylamide

Enolates rearrangements, lithium diisopropylamide

Enolization, lithium diisopropylamide

Enolization, lithium diisopropylamide

Lithium diisopropylamide

Lithium diisopropylamide enolate formation with

© 2024 chempedia.info