Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates ethylene

The following acid-catalyzed cyclizations leading to steroid hormone precursors exemplify some important facts an acetylenic bond is less nucleophilic than an olelinic bond acetylenic bonds tend to form cyclopentane rather than cyclohexane derivatives, if there is a choice in proton-catalyzed olefin cyclizations the thermodynamically most stable Irons connection of cyclohexane rings is obtained selectively electroneutral nucleophilic agents such as ethylene carbonate can be used to terminate the cationic cyclization process forming stable enol derivatives which can be hydrolyzed to carbonyl compounds without this nucleophile and with trifluoroacetic acid the corresponding enol ester may be obtained (M.B. Gravestock, 1978, A,B P.E. Peterson, 1969). [Pg.279]

Small and Browning agree with Schbpf and Winterhalder that thebainone methyl enolate (formed by 1 6 addition in which the oxygen bridge is ruptured and ethylenic linkages produced at C —C and C —C ) may be the primary intermediate in tWs reaction since it is hydrogenated... [Pg.242]

A carbonyl group cannot be protected as its ethylene ketal during the Birch reduction of an aromatic phenolic ether if one desires to regenerate the ketone and to retain the 1,4-dihydroaromatic system, since an enol ether is hydrolyzed by acid more rapidly than is an ethylene ketal. 1,4-Dihydro-estrone 3-methyl ether is usually prepared by the Birch reduction of estradiol 3-methyl ether followed by Oppenauer oxidation to reform the C-17 carbonyl function. However, the C-17 carbonyl group may be protected as its diethyl ketal and, following a Birch reduction of the A-ring, this ketal function may be hydrolyzed in preference to the 3-enol ether, provided carefully controlled conditions are employed. Conditions for such a selective hydrolysis are illustrated in Procedure 4. [Pg.11]

The double bond migration which normally occurs on forming ethylene ketals from A -3-ketones has frequently been utilized to form derivatives of the A -system. The related transformation of A -3-ketones into A -3-alcohols is usually accomplished by treatment of the enol acetate (171) (X = OAc) with borohydride. This sequence apparently depends on reduction of the intermediate (172) taking place faster than conjugation ... [Pg.360]

As the name implies, the first step of this domino process consists of a Knoevenagel condensation of an aldehyde or a ketone 2-742 with a 1,3-dicarbonyl compound 2-743 in the presence of catalytic amounts of a weak base such as ethylene diammonium diacetate (EDDA) or piperidinium acetate (Scheme 2.163). In the reaction, a 1,3-oxabutadiene 2-744 is formed as intermediate, which undergoes an inter- or an intramolecular hetero-Diels-Alder reaction either with an enol ether or an alkene to give a dihydropyran 2-745. [Pg.161]

Reaction of the enatiopure aldehyde 2-800, obtained from the corresponding imine by enantioselective hydrogenation, with Meldrum s acid (2-801) and the enol ether 2-802a (E/Z= 1 1) in the presence of a catalytic amount of ethylene diammonium diacetate for 4h gave 2-805 in 90 % yield with a 1,3 induction of >24 1. As intermediates, the Knoevenagel product 2-803 and the primarily produced cycloadduct 2-804 can be supposed the latter loses C02 and acetone by reaction with water formed during the condensation step (Scheme 2.178). [Pg.172]

At the first step, the insertion of MMA to the lanthanide-alkyl bond gave the enolate complex. The Michael addition of MMA to the enolate complex via the 8-membered transition state results in stereoselective C-C bond formation, giving a new chelating enolate complex with two MMA units one of them is enolate and the other is coordinated to Sm via its carbonyl group. The successive insertion of MMA afforded a syndiotactic polymer. The activity of the polymerization increased with an increase in the ionic radius of the metal (Sm > Y > Yb > Lu). Furthermore, these complexes become precursors for the block co-polymerization of ethylene with polar monomers such as MMA and lactones [215, 217]. [Pg.35]

More traditional carbon nucleophiles can also be used for an alkylative ring-opening strategy, as exemplified by the titanium tetrachloride promoted reaction of trimethylsilyl enol ethers (82) with ethylene oxide, a protocol which provides aldol products (84) in moderate to good yields <00TL763>. While typical lithium enolates of esters and ketones do not react directly with epoxides, aluminum ester enolates (e.g., 86) can be used quite effectively. This methodology is the subject of a recent review <00T1149>. [Pg.61]

Clear formation of ketene—zirconocene complexes upon treatment of acylzirconocene chlorides with a hindered amide base indicates that the carbonyl group of the acylzirconocene chloride possesses usual carbonyl polarization (Scheme 5.10). However, these zirconocene—ketene complexes are exceptionally inert due to the formation of strongly bound dimers [13a], Conversion of the dimer to zirconocene—ketene—alkylaluminum complexes by treating with alkylaluminum and reaction with excess acetylene in toluene at 25 °C has been reported to give a cyclic enolate in quantitative yield. Although the ketene—zirconocene—alkylaluminum complex reacts cleanly with acetylene, it does not react with ethylene or substituted acetylenes [13b]. Thus, the complex has met with limited success as a reagent in organic synthesis. [Pg.153]

The scope of the reaction has been successfully extended to a,p-ethylenic aldehydes,5 esters,6 and amides7 as well as to a,p-acetylenic ketones8 (see Table IV). With esters, the reaction must be performed in the presence of chlorotrimethylsilane (MeaSiCI) to avoid the Claisen reaction by trapping the intermediate enolate. In most cases the organomanganese procedure is simple and more efficient than the organocopper procedure. [Pg.222]

By contrast, lithium enolates derived from tertiary amides do react with oxiranes The diastereoselectivity in the reaction of simple amide enolates with terminal oxiranes has been addressed and found to be low (Scheme 45). The chiral bicyclic amide enolate 99 reacts with a good diastereoselectivity with ethylene oxide . The reaction of the chiral amide enolate 100 with the chiral oxiranes 101 and 102 occurs with a good diastereoselectivity (in the matched case ) interestingly, the stereochemical course is opposite to the one observed with alkyl iodides. The same reversal is found in the reaction of the amide enolate 103. By contrast, this reversal in diastereoselectivity compared to alkyl iodides was not found in the reaction of the hthium enolate 104 with the chiral oxiranes 105 and 106 °. It should be noted that a strong matched/mismatched effect occurs for enolates 100 and 103 with chiral oxiranes, and excellent diastereoselec-tivities can be achieved. [Pg.1203]


See other pages where Enolates ethylene is mentioned: [Pg.242]    [Pg.272]    [Pg.337]    [Pg.265]    [Pg.242]    [Pg.272]    [Pg.337]    [Pg.265]    [Pg.87]    [Pg.238]    [Pg.242]    [Pg.270]    [Pg.270]    [Pg.10]    [Pg.38]    [Pg.356]    [Pg.86]    [Pg.162]    [Pg.825]    [Pg.111]    [Pg.809]    [Pg.114]    [Pg.825]    [Pg.1215]    [Pg.261]    [Pg.273]    [Pg.146]    [Pg.152]    [Pg.450]    [Pg.262]    [Pg.173]    [Pg.390]    [Pg.98]    [Pg.26]    [Pg.652]    [Pg.658]   
See also in sourсe #XX -- [ Pg.17 , Pg.89 , Pg.180 , Pg.286 ]




SEARCH



© 2024 chempedia.info