Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolate anions Michael reaction

In the late nineteenth century, Michael found that the enolate anion (46) derived from diethyl malonate reacts with ethyl acrylate at the P-carbon (as shown in the illustration) to give an enolate anion, 47, as the product. Remember from Chapter 22 (Section 22.7.4) that the a-proton of a 1,3-dicarbonyl compound such as diethyl malonate is rather acidic (pK of about 11), and even a relatively weak base will deprotonate to form the enolate anion. Michael addition of 46 with ethyl acrylate will give enolate anion 47, and aqueous acid workup leads to the isolated product, 48. Attack at the -carbon is possible because that carbon is less hindered than the acyl carbon, so reaction at the C=C unit is somewhat faster than attack at the acyl carbon. Michael addition occurs with relatively stable carbanion nucleophiles, such as malonate derivative 46 and some other common nucleophiles. Other conjugated carbonyl derivatives react similarly. [Pg.1215]

So far in this section we have combined enolate anions with other carbonyl compounds by direct attack at the carbonyl group. We can expand the scope of this reaction by using a,p-unsaturated carbonyl compounds as the electrophiles. This is the Michael reaction. Remind yourself of tliis by writing out the mechanism of a Michael reaction such as ... [Pg.35]

Stabilized anions exhibit a pronounced tendency to undergo conjugate addition to a p unsaturated carbonyl compounds This reaction called the Michael reaction has been described for anions derived from p diketones m Section 18 13 The enolates of ethyl acetoacetate and diethyl malonate also undergo Michael addition to the p carbon atom of a p unsaturated aldehydes ketones and esters For example... [Pg.901]

The 1,4-addition of an enolate anion 1 to an o ,/3-unsaturated carbonyl compound 2, to yield a 1,5-dicarbonyl compound 3, is a powerful method for the formation of carbon-carbon bonds, and is called the Michael reaction or Michael addition The 1,4-addition to an o ,/3-unsaturated carbonyl substrate is also called a conjugate addition. Various other 1,4-additions are known, and sometimes referred to as Michael-like additions. [Pg.201]

Anionic domino processes are the most often encountered domino reactions in the chemical literature. The well-known Robinson annulation, double Michael reaction, Pictet-Spengler cyclization, reductive amination, etc., all fall into this category. The primary step in this process is the attack of either an anion (e. g., a carban-ion, an enolate, or an alkoxide) or a pseudo anion as an uncharged nucleophile (e. g., an amine, or an alcohol) onto an electrophilic center. A bond formation takes place with the creation of a new real or pseudo-anionic functionality, which can undergo further transformations. The sequence can then be terminated either by the addition of a proton or by the elimination of an X group. [Pg.48]

Reactions involving ketones are generally controlled by the thermodynamic stability of the enolate anion. However, 2-phenylcyclohexanone reacts with bulky Michael acceptors to form the 2,6-regioisomer preferentially [17], indicating that the reaction is mainly kinetically controlled with the approach of the Michael acceptor to the substituted 2-position being sterically hindered. [Pg.274]

The conjugate addition of enolate anions onto a,P-unsaturated systems is an important synthetic reaction, and is termed the Michael reaction, though this terminology may often be used in the broader... [Pg.397]

A rather nice example of enolate anion chemistry involving the Michael reaction and the aldol reaction is provided by the Robinson annulation, a ring-forming sequence used in the synthesis of steroidal systems (Latin annulus, ring). [Pg.398]

These are reacted together in basic solution. It can be deduced that the 1,3-diketone is more acidic than the monoketone substrate, so will be ionized by removal of a proton from the carbon between the two carbonyls to give the enolate anion as a nucleophile. This attacks the a,P-unsaturated ketone in a Michael reaction. It is understandable that this large nucleophile prefers to attack the unhindered -position rather than the more congested ketone carbonyl. [Pg.399]

Hydroxycoumarin can be considered as an enol tautomer of a 1,3-dicarbonyl compound conjugation with the aromatic ring favours the enol tautomer. This now exposes its potential as a nucleophile. Whilst we may begin to consider enolate anion chemistry, no strong base is required and we may formulate a mechanism in which the enol acts as the nucleophile, in a simple aldol reaction with formaldehyde. Dehydration follows and produces an unsaturated ketone, which then becomes the electrophile in a Michael reaction (see Section 10.10). The nucleophile is a second molecule of 4-hydroxycoumarin. [Pg.419]

The reaction is considered as a combination of a Michael reaction, the conjugate addition of an enolate anion on to an unsaturated carbonyl compound, plus an aldol reaction followed by elimination of water. [Pg.655]

Michael reaction conjugate addition of enolate anion onto unsaturated carbonyl... [Pg.655]

Nitroalkenes, e.g. 1 -nitrocyclohexene, 1-nitrocycloheptene, 1-nitrocyclooctene and (3-methyl-j8-nitrostyrene, undergo Michael addition with the enolate anions of (3-ketoesters. The resulting acids undergo a Nef reaction to give 1,4-diketones, which yield furans by subsequent ring closure (Scheme 18) (59LA(626)7l). [Pg.665]

A most important property of enolate anions, at least as far as synthesis is concerned, is their excellent nucleophilicity, which enables them to add to double bonds and to participate in nucleophilic substitution. When the addition is to a carbonyl double bond, it is called an aldol addition (Equation 17-4). Additions of enolate anions to carbon-carbon double bonds usually are classified as Michael additions (Equation 17-5), and these are discussed in Sections 17-5B and 18-9D. The principles of SN nucleophilic reactions of enolate anions (Equation 17-6) will be considered in Section 17-4, and their synthetic applications in detail in Chapter 18. [Pg.749]

Many carbanionic nucleophiles that would be considered too hard to react as Michael donors can be made into effective reagents for conjugate addition reactions by appending resonance or inductively stabilizing groups to soften their intrinsic Lewis basicity. Such stabilized anionic Michael donors include enolates, alkylthio-substituted carbanions, ylides and nitro-substituted carbanions. [Pg.258]

In the Michael-addition, a nucleophile Nu is added to the / -position of an a,fi-unsaturated acceptor A (Scheme 4.1) [1], The active nucleophile Nu is usually generated by deprotonation of the precursor NuH. Addition of Nu to a prochiral acceptor A generates a center of chirality at the / -carbon atom of the acceptor A. Furthermore, the reaction of the intermediate enolate anion with the electrophile E+ may generate a second center of chirality at the a-carbon atom of the acceptor. This mechanistic scheme implies that enantioface-differentiation in the addition to the yfi-carbon atom of the acceptor can be achieved in two ways (i) deprotonation of NuH with a chiral base results in the chiral ion pair I which can be expected to add to the acceptor asymmetrically and (ii) phase-transfer catalysis (PTC) in which deprotonation of NuH is achieved in one phase with an achiral base and the anion... [Pg.45]


See other pages where Enolate anions Michael reaction is mentioned: [Pg.467]    [Pg.320]    [Pg.320]    [Pg.110]    [Pg.65]    [Pg.439]    [Pg.50]    [Pg.525]    [Pg.83]    [Pg.399]    [Pg.673]    [Pg.83]    [Pg.242]    [Pg.353]    [Pg.3]    [Pg.162]    [Pg.18]    [Pg.191]    [Pg.253]    [Pg.258]    [Pg.261]    [Pg.120]    [Pg.121]   
See also in sourсe #XX -- [ Pg.547 , Pg.553 ]




SEARCH



Enolate anions

Enolate anions reactions

Enolates Michael

Enolates anion

Enolates anionic

© 2024 chempedia.info