Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol ethers, amination

Keywords Catalyst, Alkylation, Allylation, Arylation, Mannich reaction, Carbon-nitrogen double bond, Imine, Nitrone, Aldimine, Organozinc reagents, Silyl ketene acetal, Silyl enol ether, Amine, (3-Amino acid... [Pg.107]

Use of trimethylsilyl triflate to bring about Piunmeier rearrangement requires the presence of a base such as a tertiary amine (vide supra equations 15 and 26). In some instances, involving attempts to alkylate Pummerer intermediates with silyl enol ethers under such conditions, the base has been found to compete as a nucleophile. In the absence of the silyl enol ether, amine addition can be very efficient. For example, treatment of methallyl phenyl sulfoxide with diisopropylethylamine and trimethylsilyl inflate in dichloromethane (equation 29) at 0 C yields the ammonium triflate indicated in 91% yield. Other tertiary amines which undergo this reaction include niethylamine and Af,Af-diethyltrimethylsiI-amine. In the latter case with allyl phenyl sulfoxide as the substrate and a mildly acidic wotk-up, the Mannich derivative shown in equation (30) can be obtained in 90% yield. ... [Pg.202]

This section covers cyclizations to the pyrrole nucleus catalyzed by other metals (Ti, Mn, Ru, Pd, Pt, Zn, In). Dembinski and co-workers used zinc(II) chloride as ligand-free catalyst for the microwave-assisted cyclization of homopropargyl azides 26 to afford substituted pyrroles 27 (Scheme 8) [62]. A similar methodology for the synthesis of 2,4,5-trisubstituted pyrroles was described by Driver et al. employing substituted 1-azidobuta-l,3-dienes in a cyclization reaction using catalytic amounts of zinc(ll) iodide [63]. A three-component zinc-catalyzed one-pot cyclization of aromatic and aliphatic propargylic acetates, silyl enol ethers, and primary amines to substituted pyrroles has been described by Zhan et al. The reaction sequence includes propargylation of the silyl enol ether, amination, 5-exo-(7ig-cyclization, and isomerization [64]. Hiroya and co-workers have shown... [Pg.210]

The reaction conditions applied are usually heating the amine with a slight excess of aldehyde and a considerable.excess of 2d-30hydrochloric acid at 100 °C for a few hours, but much milder ( physiological ) conditions can be used with good success. Diols, olefinic double bonds, enol ethers, and glycosidic bonds survive a Pictet-Spengler reaction very well, since phenol and indole systems are much more reactive than any of these acid sensitive functional groups (W.M. Whaley, 1951 J.E.D. Barton, 1965 A.R. Battersby, 1969). [Pg.292]

Me3SiI, CH2CI2, 25°, 15 min, 85-95% yield.Under these cleavage conditions i,3-dithiolanes, alkyl and trimethylsilyl enol ethers, and enol acetates are stable. 1,3-Dioxolanes give complex mixtures. Alcohols, epoxides, trityl, r-butyl, and benzyl ethers and esters are reactive. Most other ethers and esters, amines, amides, ketones, olefins, acetylenes, and halides are expected to be stable. [Pg.180]

Generally, isolated olefinic bonds will not escape attack by these reagents. However, in certain cases where the rate of hydroxyl oxidation is relatively fast, as with allylic alcohols, an isolated double bond will survive. Thepresence of other nucleophilic centers in the molecule, such as primary and secondary amines, sulfides, enol ethers and activated aromatic systems, will generate undesirable side reactions, but aldehydes, esters, ethers, ketals and acetals are generally stable under neutral or basic conditions. Halogenation of the product ketone can become but is not always a problem when base is not included in the reaction mixture. The generated acid can promote formation of an enol which in turn may compete favorably with the alcohol for the oxidant. [Pg.233]

Comprehensive work in this field has been done by Slovak authors (98MI1, 95M1359, 96CCC269, 96CCC371, 97CCC99). They prepared 2-substituted (H, Me, Ph) 4-, 5-, 6-, and 7-nitrobenzoxazoles, which were then reduced to amines (not isolated) and subjected to subsequent nucleophilic substitution with activated enol ethers such as alkoxymethylene derivatives of malonic acid esters and nitrile, 3-oxobutanoic acid esters, pentanedione, or cyanoacetic acid esters to yield aminoethylenes 8. [Pg.194]

A somewhat different approach is used to prepare the compounds containing the amine at the 4 position. Condensation of the amidine from acetonitrile (138) with the enol ether from formylacetonitrile (137) leads to the requisite pyrimidine (139). [Pg.128]

Though dental afflictions constitute a very significant disease entity, these have received relatively little attention from medicinal chemists. (The fluoride toothpastes may form an important exception.) This therapeutic target Is, however, sufficiently Important to be the focus of at least some research. A highly functionalized piperazine derivative that has come out of such work shows prophylactic activity against dental caries. Condensation of the enol ether 1 of thiourea with ji-pentylisocyanate gives the addition product 1J. Reaction of this with diamine 78, derived from piperazine, leads to substitution of the methylthio moiety by the primary amine, in all likelihood by an addition-elimination sequence. There is thus obtained ipexidine (79). ... [Pg.157]

Enantioselective deprotonation of prochiral 4-alkylcyclohexanones using certain lithium amide bases derived from chiral amines such as (1) has been shown (73) to generate chiral lithium enolates, which can be trapped and used further as the corresponding trimethylsilyl enol ethers trapping was achieved using Corey s internal quench described above. [Pg.62]

As in the Japp-Klingemann reaction, when Z is an acyl or carboxyl group (in the case of R2CH—Z), it can be cleaved. Since oximes and nitroso compounds can be reduced to primary amines, this reaction often provides a route to amino acids. As in the case of 12-4, the silyl enol ether of a ketone can be used instead of the ketone itself. Good yields of a-oximinoketones (20) can be obtained by treating ketones with fert-butyl thionitrate. ... [Pg.780]

This can also be done at room temperamre by treatment with trimethylsilyl triflate and a tertiary amine or with MesSil in the presence of hexamethyldisilazane. Enol ethers can be pyrolyzed to alkenes and aldehydes in a manner similar to that of 17-3 ... [Pg.1329]

Scheme 2.9 gives some examples of use of enantioselective catalysts. Entries 1 to 4 are cases of the use of the oxazaborolidinone-type of catalyst with silyl enol ethers and silyl ketene acetals. Entries 5 and 6 are examples of the use of BEMOL-titanium catalysts, and Entry 7 illustrates the use of Sn(OTf)2 in conjunction with a chiral amine ligand. The enantioselectivity in each of these cases is determined entirely by the catalyst because there are no stereocenters adjacent to the reaction sites in the reactants. [Pg.131]

Scheme 2.12 shows some representative Mannich reactions. Entries 1 and 2 show the preparation of typical Mannich bases from a ketone, formaldehyde, and a dialkylamine following the classical procedure. Alternatively, formaldehyde equivalents may be used, such as l>is-(di methyl ami no)methane in Entry 3. On treatment with trifluoroacetic acid, this aminal generates the iminium trifluoroacetate as a reactive electrophile. lV,A-(Dimethyl)methylene ammonium iodide is commercially available and is known as Eschenmoser s salt.192 This compound is sufficiently electrophilic to react directly with silyl enol ethers in neutral solution.183 The reagent can be added to a solution of an enolate or enolate precursor, which permits the reaction to be carried out under nonacidic conditions. Entries 4 and 5 illustrate the preparation of Mannich bases using Eschenmoser s salt in reactions with preformed enolates. [Pg.140]

The oxidation of silyl enol ethers with the osmium tetroxide-amine oxide combination also leads to a-hydroxyketones in generally good yields.147... [Pg.1114]

The mechanism of this transformation is a matter of debate, and may vary with the structure of the heteroanalogous carbonyl compound employed. Although a Diels-Alder-type process is conceivable [246], a Lewis acid-induced addition of the silyl enol ether moiety in 2-453 followed by a cyclizahon through a nucleophilic intramolecular attack of the amine and subsequent elimination of methanol is assumed in this case [247]. [Pg.119]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]


See other pages where Enol ethers, amination is mentioned: [Pg.89]    [Pg.85]    [Pg.740]    [Pg.235]    [Pg.103]    [Pg.57]    [Pg.42]    [Pg.1027]    [Pg.942]    [Pg.16]    [Pg.1134]    [Pg.348]    [Pg.225]    [Pg.88]    [Pg.194]    [Pg.4]   
See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Amination enolate

Amine enolates

Amine ether

Enolates, amination

© 2024 chempedia.info