Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol acetates formation

One of the most widely used methods for the introduction of a 17a-hydroxy group into a 20-ketopregnane is via A ° -enol acetate formation. The overall reaction is ... [Pg.185]

In a situation where severe steric hindrance e.g., 16,16-dimethyl-20-keto-pregnanes) prevents enol acetate formation, an alternate scheme has been devised. Condensation of ethyl oxalate at C-21 produces, after hydrolysis, the 21-glyoxylic acid this on treatment with acetic anhydride and a strong acid catalyst such as perchloric acid gives both lactone acetates. [Pg.187]

The same year Grieco s group published a synthesis of seco acid 58 by a route reminicent of the Masamune and Yamaguchi approaches.The C-8 to C-11 fragment was constructed from 2-methylcyclohexenone (69) as shown in Scheme 2.9. Osmylation and protection as the acetonide afforded a 65% yield of 70. This intermediate was then converted into ester aldehyde 71 (66%) via enol acetate formation, ozonolysis, and esterification with diazomethane. [Pg.50]

Scheme 18 Tandem copper-catalyzed conjugate addition of triorganoaluminum-allyl enol acetate formation... Scheme 18 Tandem copper-catalyzed conjugate addition of triorganoaluminum-allyl enol acetate formation...
Another preparative method for the enone 554 is the reaction of the enol acetate 553 with allyl methyl carbonate using a bimetallic catalyst of Pd and Tin methoxide[354,358]. The enone formation is competitive with the allylation reaction (see Section 2.4.1). MeCN as a solvent and a low Pd to ligand ratio favor enone formation. Two regioisomeric steroidal dienones, 558 and 559, are prepared regioselectively from the respective dienol acetates 556 and 557 formed from the steroidal a, /3-unsaturated ketone 555. Enone formation from both silyl enol ethers and enol acetates proceeds via 7r-allylpalladium enolates as common intermediates. [Pg.364]

Other methods of protecting the aldehyde group include formation of an enol acetate, an enamine, or an imine (174,175). In the enamine route, regeneration of the aldehyde is accompHshed simply by the addition of water. [Pg.426]

As first demonstrated by Stork,the metal enolate formed by metal-ammoni reduction of a conjugated enone or a ketol acetate can be alkylated in liquic ammonia. The reductive alkylation reaction is synthetically useful since ii permits alkylation of a ketone at the a-position other than the one at whicf thermodynamically controlled enolate salt formation occurs. Direct methyl-ation of 5a-androstan-17-ol-3-one occurs at C-2 whereas reductive methyl-... [Pg.46]

Two surprising observations were made in the course of this work first that the enol acetate (5) is stable under the conditions for formation of (6) from (4) second, that the course of the buffered bromination of (5) depends on the conditions used. Thus, in the presence of epichlorohydrin, (7) is the sole isomer produced, whereas in pyridine-acetic acid approximately equal amounts of (7) and (8) are formed. It was suggested that this difference is inherent in the mechanism and not a result of isomerization of (7) to (8) during the course of the reaction. [Pg.272]

In the absence of steric factors e.g. 5 ), the attack is antiparallel (A) (to the adjacent axial bond) and gives the axially substituted chair form (12). In the presence of steric hindrance to attack in the preferred fashion, approach is parallel (P), from the opposite side, and the true kinetic product is the axially substituted boat form (13). This normally undergoes an immediate conformational flip to the equatorial chair form (14) which is isolated as the kinetic product. The effect of such factors is exemplified in the behavior of 3-ketones. Thus, kinetically controlled bromination of 5a-cholestan-3-one (enol acetate) yields the 2a-epimer, (15), which is also the stable form. The presence of a 5a-substituent counteracts the steric effect of the 10-methyl group and results in the formation of the unstable 2l5-(axial)halo ketone... [Pg.274]

Hydroxyl groups are stable to peracids, but oxidation of an allylic alcohol during an attempted epoxidation reaction has been reported." The di-hydroxyacetone side chain is usually protected during the peracid reaction, either by acetylation or by formation of a bismethylenedioxy derivative. To obtain high yields of epoxides it is essential to avoid high reaction temperatures and a strongly acidic medium. The products of epoxidation of enol acetates are especially sensitive to heat or acid and can easily rearrange to keto acetates. [Pg.10]

Steroidal 17-cyanohydrins are relatively stable towards chromium trioxide in acetic acid (thus permitting oxidation of a 3-hydroxyl group ) and towards ethyl orthoformate in ethanolic hydrogen chloride (thus permitting enol ether formation of a 3-keto-A system ). Sodium and K-propanol reduction produces the 17j -hydroxy steroid, presumably by formation of the 17-ketone prior to reduction. ... [Pg.133]

A 20) oiefin Formation via Enol Acetates and Ozonolysis A stock solution of acetylating mixture is prepared by dissolving 0.2 ml of 70-72% perchloric acid in 5 ml of acetic anhydride. To a solution of 5 g of 3a,6a-diacetoxy-5jff-pregnan-20-one in 50 ml of carbon tetrachloride is added 5 ml of the above stock perchloric acid-acetic anhydride solution and the mixture is allowed to stand at room temperature for 1.25 hr. The mixture is... [Pg.159]

Only in 1961 did Woodward and Olofson succeed in elucidating the true mechanism of this interesting reaction by making an extensive use of spectroscopic methods. The difficulty was that the reaction proceeds in many stages. The isomeric compounds formed thereby are extremely labile, readily interconvertible, and can be identified only spectroscopically. The authors found that the attack by the anion eliminates the proton at C-3 (147) subsequent cleavage of the N—0 bond yields a -oxoketene imine (148) whose formation was established for the first time. The oxoketene imine spontaneously adds acetic acid and is converted via two intermediates (149, 150) to an enol acetate (151) whose structure was determined by UV spectra. Finally the enol acetate readily yields the W-acyl derivative (152). [Pg.409]

In further modifications of these norprogestins, reaction of norethindrone with acetic anhydride in the presence of p-toluene-sulfonic acid, followed by hydrolysis of the first-formed enol acetate, affords norethindrone acetate (41). This in turn affords, on reaction with excess cyclopentanol in the presence of phosphorus pentoxide, the 3-cyclopentyl enol ether (42) the progestational component of Riglovic . Reduction of norethindrone affords the 3,17-diol. The 33-hydroxy compound is the desired product since reactions at 3 do not show nearly the stereoselectivity of those at 17 by virtue of the relative lack of stereo-directing proximate substituents, the formation of the desired isomer is engendered by use of a bulky reducing agent, lithium aluminum-tri-t-butoxide. Acetylation of the 33,173-diol iffords ethynodiol diacetate, one of the most potent oral proves tins (44). ... [Pg.165]

The initial addition products to alkynes are not always stable. Addition of acetic acid, for example, results in the formation of enol acetates, which are converted to the corresponding ketone under the reaction conditions.151... [Pg.335]

If HMPA is included in the solvent, the Z-enolate predominates.236,238 DMPU also favors the Z-enolate. The switch to the Z-enolate with HMPA or DMPU is attributed to a looser, perhaps acyclic TS being favored as the result of strong solvation of the lithium ion. The steric factors favoring the -TS are therefore diminished.239 These general principles of solvent control of enolate stereochemistry are applicable to other systems.240 For example, by changing the conditions for silyl ketene acetal formation, the diastereomeric compounds 17a and 17b can be converted to the same product with high diastereoselectivity.241... [Pg.568]

As mentioned earlier, metal complexation not only allows isolation of the QM derivatives but can also dramatically modify their reactivity patterns.29o-QMs are important intermediates in numerous synthetic and biological processes, in which the exocyclic carbon exhibits an electrophilic character.30-33 In contrast, a metal-stabilized o-QM can react as a base or nucleophile (Scheme 3.16).29 For instance, protonation of the Ir-T 4-QM complex 24 by one equivalent of HBF4 gave the initial oxo-dienyl complex 25, while in the presence of an excess of acid the dicationic complex 26 was obtained. Reaction of 24 with I2 led to the formation of new oxo-dienyl complex 27, instead of the expected oxidation of the complex and elimination of the free o-QM. Such reactivity of the exocyclic methylene group can be compared with the reactivity of electron-rich enol acetates or enol silyl ethers, which undergo electrophilic iodination.34... [Pg.78]


See other pages where Enol acetates formation is mentioned: [Pg.428]    [Pg.410]    [Pg.410]    [Pg.428]    [Pg.422]    [Pg.428]    [Pg.157]    [Pg.1]    [Pg.9]    [Pg.428]    [Pg.410]    [Pg.410]    [Pg.428]    [Pg.422]    [Pg.428]    [Pg.157]    [Pg.1]    [Pg.9]    [Pg.24]    [Pg.104]    [Pg.350]    [Pg.385]    [Pg.218]    [Pg.438]    [Pg.238]    [Pg.272]    [Pg.379]    [Pg.450]    [Pg.196]    [Pg.291]    [Pg.16]    [Pg.34]    [Pg.36]    [Pg.115]    [Pg.186]    [Pg.276]    [Pg.92]   


SEARCH



Acetals formation

Acetate enolates

Acetate formation

Acetic formation

Enol acetals

Enol acetates

Enol formate

Enol formation

Enolate formation

Enolates formation

© 2024 chempedia.info