Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy Waals

Often the van der Waals attraction is balanced by electric double-layer repulsion. An important example occurs in the flocculation of aqueous colloids. A suspension of charged particles experiences both the double-layer repulsion and dispersion attraction, and the balance between these determines the ease and hence the rate with which particles aggregate. Verwey and Overbeek [44, 45] considered the case of two colloidal spheres and calculated the net potential energy versus distance curves of the type illustrated in Fig. VI-5 for the case of 0 = 25.6 mV (i.e., 0 = k.T/e at 25°C). At low ionic strength, as measured by K (see Section V-2), the double-layer repulsion is overwhelming except at very small separations, but as k is increased, a net attraction at all distances... [Pg.240]

Face-centered cubic crystals of rare gases are a useful model system due to the simplicity of their interactions. Lattice sites are occupied by atoms interacting via a simple van der Waals potential with no orientation effects. The principal problem is to calculate the net energy of interaction across a plane, such as the one indicated by the dotted line in Fig. VII-4. In other words, as was the case with diamond, the surface energy at 0 K is essentially the excess potential energy of the molecules near the surface. [Pg.264]

The quantity zoi will depend very much on whether adsorption sites are close enough for neighboring adsorbate molecules to develop their normal van der Waals attraction if, for example, zu is taken to be about one-fourth of the energy of vaporization [16], would be 2.5 for a liquid obeying Trouton s rule and at its normal boiling point. The critical pressure P, that is, the pressure corresponding to 0 = 0.5 with 0 = 4, will depend on both Q and T. A way of expressing this follows, with the use of the definitions of Eqs. XVII-42 and XVII-43 [17] ... [Pg.614]

Fig. XVII-25. Interaction energy distributions for N2 on BN (a) Langmuir b) Langmuir plus lateral interaction (c) van der Waals. (From Ref. 162.)... Fig. XVII-25. Interaction energy distributions for N2 on BN (a) Langmuir b) Langmuir plus lateral interaction (c) van der Waals. (From Ref. 162.)...
Jeziorski B, Moszynski R and Szalewicz K 1994 Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes Chem. Rev. 94 1887... [Pg.213]

LeRoy R J and Carley J S 1980 Spectroscopy and potential energy surfaces of van der Waals molecules Adv. Chem. Phys. 42 353... [Pg.214]

Note that the van der Waals forces tliat hold a physisorbed molecule to a surface exist for all atoms and molecules interacting with a surface. The physisorption energy is usually insignificant if the particle is attached to the surface by a much stronger chemisorption bond, as discussed below. Often, however, just before a molecule fonus a strong chemical bond to a surface, it exists in a physisorbed precursor state for a short period of time, as discussed below in section AL7.3.3. [Pg.294]

This is the well known equal areas mle derived by Maxwell [3], who enthusiastically publicized van der Waal s equation (see figure A2.3.3. The critical exponents for van der Waals equation are typical mean-field exponents a 0, p = 1/2, y = 1 and 8 = 3. This follows from the assumption, connnon to van der Waals equation and other mean-field theories, that the critical point is an analytic point about which the free energy and other themiodynamic properties can be expanded in a Taylor series. [Pg.445]

Figure A2.5.9. (Ap), the Helmholtz free energy per unit volume in reduced units, of a van der Waals fluid as a fiinction of the reduced density p for several constant temperaPires above and below the critical temperaPire. As in the previous figures the llill curves (including the tangent two-phase tie-lines) represent stable siPiations, the dashed parts of the smooth curve are metastable extensions, and the dotted curves are unstable regions. See text for details. Figure A2.5.9. (Ap), the Helmholtz free energy per unit volume in reduced units, of a van der Waals fluid as a fiinction of the reduced density p for several constant temperaPires above and below the critical temperaPire. As in the previous figures the llill curves (including the tangent two-phase tie-lines) represent stable siPiations, the dashed parts of the smooth curve are metastable extensions, and the dotted curves are unstable regions. See text for details.
As discussed in section A3.12.2. intrinsic non-RRKM behaviour occurs when there is at least one bottleneck for transitions between the reactant molecule s vibrational states, so drat IVR is slow and a microcanonical ensemble over the reactant s phase space is not maintained during the unimolecular reaction. The above discussion of mode-specific decomposition illustrates that there are unimolecular reactions which are intrinsically non-RRKM. Many van der Waals molecules behave in this maimer [4,82]. For example, in an initial microcanonical ensemble for the ( 211 )2 van der Waals molecule both the C2H4—C2H4 intennolecular modes and C2H4 intramolecular modes are excited with equal probabilities. However, this microcanonical ensemble is not maintained as the dimer dissociates. States with energy in the intermolecular modes react more rapidly than do those with the C2H4 intramolecular modes excited [85]. [Pg.1037]

If we knew the variation m A as a fiinction of coverage 0, this would be the equation for the isothenn. Typically the energy for physical adsorption in the first layer, -A E, when adsorption is predominantly tlnongh van der Waals interactions, is of the order of lO/rJ where T is the temperature and /rthe Boltzmann constant, so that, according to equation (B1.26.6), the first layer condenses at a pressure given by PIPq. 10... [Pg.1871]

Hard-sphere models lack a characteristic energy scale and, hence, only entropic packing effects can be investigated. A more realistic modelling has to take hard-core-like repulsion at small distances and an attractive interaction at intennediate distances into account. In non-polar liquids the attraction is of the van der Waals type and decays with the sixth power of the interparticle distance r. It can be modelled in the fonn of a Leimard-Jones potential Fj j(r) between segments... [Pg.2365]

Rare-gas clusters can be produced easily using supersonic expansion. They are attractive to study theoretically because the interaction potentials are relatively simple and dominated by the van der Waals interactions. The Lennard-Jones pair potential describes the stmctures of the rare-gas clusters well and predicts magic clusters with icosahedral stmctures [139, 140]. The first five icosahedral clusters occur at 13, 55, 147, 309 and 561 atoms and are observed in experiments of Ar, Kr and Xe clusters [1411. Small helium clusters are difficult to produce because of the extremely weak interactions between helium atoms. Due to the large zero-point energy, bulk helium is a quantum fluid and does not solidify under standard pressure. Large helium clusters, which are liquid-like, have been produced and studied by Toennies and coworkers [142]. Recent experiments have provided evidence of... [Pg.2400]

The use of isotopic substitution to detennine stmctures relies on the assumption that different isotopomers have the same stmcture. This is not nearly as reliable for Van der Waals complexes as for chemically bound molecules. In particular, substituting D for H in a hydride complex can often change the amplitudes of bending vibrations substantially under such circumstances, the idea that the complex has a single stmcture is no longer appropriate and it is necessary to think instead of motion on the complete potential energy surface a well defined equilibrium stmcture may still exist, but knowledge of it does not constitute an adequate description of the complex. [Pg.2441]

Most infrared spectroscopy of complexes is carried out in tire mid-infrared, which is tire region in which tire monomers usually absorb infrared radiation. Van der Waals complexes can absorb mid-infrared radiation eitlier witli or without simultaneous excitation of intennolecular bending and stretching vibrations. The mid-infrared bands tliat contain tire most infonnation about intennolecular forces are combination bands, in which tire intennolecular vibrations are excited. Such spectra map out tire vibrational and rotational energy levels associated witli monomers in excited vibrational states and, tluis, provide infonnation on interaction potentials involving excited monomers, which may be slightly different from Arose for ground-state molecules. [Pg.2444]


See other pages where Energy Waals is mentioned: [Pg.61]    [Pg.61]    [Pg.113]    [Pg.267]    [Pg.591]    [Pg.703]    [Pg.200]    [Pg.201]    [Pg.460]    [Pg.503]    [Pg.503]    [Pg.617]    [Pg.618]    [Pg.621]    [Pg.627]    [Pg.628]    [Pg.635]    [Pg.653]    [Pg.901]    [Pg.1169]    [Pg.1255]    [Pg.1696]    [Pg.1871]    [Pg.1871]    [Pg.1874]    [Pg.1957]    [Pg.1959]    [Pg.2268]    [Pg.2268]    [Pg.2411]    [Pg.2439]    [Pg.2439]    [Pg.2440]    [Pg.2444]    [Pg.2445]    [Pg.2446]   
See also in sourсe #XX -- [ Pg.493 ]




SEARCH



Interaction energy and the van der Waals

Interaction energy, van der Waals

Internal energy of the van der Waals gas

Potential Energy Due to the van der Waals-London Force

The van der Waals Energy

Van der Waals attraction energy

Van der Waals bond energy

Van der Waals energy

Van der Waals energy terms

Van der Waals free energy

Waals Attractive Interaction Energy

Waals Interaction Energy

© 2024 chempedia.info