Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy indicators

Figure B3.4.10. Schematic figure of a ID double-well potential surface. The reaction probabilities exliibit peaks whenever the collision energy matches the energy of the resonances, which are here the quasi-bound states in the well (with their energy indicated). Note that the peaks become wider for the higher energy resonances—the high-energy resonance here is less bound and Teaks more toward the asymptote than do the low-energy ones. Figure B3.4.10. Schematic figure of a ID double-well potential surface. The reaction probabilities exliibit peaks whenever the collision energy matches the energy of the resonances, which are here the quasi-bound states in the well (with their energy indicated). Note that the peaks become wider for the higher energy resonances—the high-energy resonance here is less bound and Teaks more toward the asymptote than do the low-energy ones.
The first study was made on the benzene molecule [79], The S ISi photochemistry of benzene involves a conical intersection, as the fluorescence vanishes if the molecule is excited with an excess of 3000 crn of energy over the excitation energy, indicating that a pathway is opened with efficient nonradiative decay to the ground state. After irradiation, most of the molecules return to benzene. A low yield of benzvalene, which can lead further to fulvene, is, however, also obtained. [Pg.302]

The ranking of conformational free energies indicated that the closed state of cAPK is favored even in the absence of ligands, which is in contrast to experimental data that showed a preferred population of the open conformation. One reason for this discrepancy could be that the modelled intermediate ... [Pg.70]

A primary concern in coal-fired power generation is the release of air pollutants. Limits on SO2 output, 0.52 g/MJ equivalent of coal input to a new plant, have been estabflshed. Eor a bituminous coal of 27.9 MJ/kg there is thus an upper limit of 0.72% sulfur content. Relatively few coals can meet this requirement. The U.S. Department of Energy indicated recoverable reserves of 420 x 10 t in 1987 (2) that were categorized by sulfur content 33.5% had 0.6% S or less, 15.4% had between 0.61% and 0.83% S, 16.1% had between 0.84 and 1.67% S, 12.4% had between 1.68 and 2.50% S, and 22.6% had more than 2.5% S. The lowest sulfur coal, 86%, is found west of the Mississippi River, mainly in Montana and Wyoming, quite distant from the electric power demand centers in the East. A trend to utilization of the western coals has developed. [Pg.234]

In summary, all estimates of resonance energies indicate a decrease in aromaticity in the sequence benzene > thiophene > pyrrole > furan. Similar sequences are also found for the benzo[6] and dibenzo analogues. A somewhat different sequence is found for the benzo[c] fused heterocycles with isoindole > benzo[c]thiophene > benzo[c]furan. As would be anticipated, the resonance energies for the benzo[c] heterocycles are substantially lower than those for their benzo[6] isomers. [Pg.28]

Determination of surface functional groups, e.g., —OH, —C - C—, and >C = O, and identificadon of adsorbed molecules comes principally from comparison with vibrational spectra (infixed and Raman) of known molecules and compounds. Quick qualitative analysis is possible, e.g., stretching modes involving H appear for v(C—H) at 3000 cm and for v(0—H) at 3400 cm L In addition, the vibrational energy indicates the chemical state of the atoms involved, e.g., v(C=C) " 1500 cmT and v(C=0) " 1800 cm"L Further details concerning the structure of adsorbates... [Pg.448]

Figure 15. Circular dichroism of the C=0 C li peak (BE = 292.7 eV) in fenchone at three different photon energies, indicated, (a) Photoelectron spectrum of the carbonyl peak of the (1S,4R) enantiomer, recorded with right (solid line) and left (broken line) circularly polarized radiation at the magic angle, 54.7° to the beam direction, (b) The circular dichroism signal for fenchone for (1R,4A)-fenchone (x) and the (lS,41 )-fenchone (+) plotted as the raw difference / p — /rep of the 54.7° spectra, for example, as in the row above, (c) The asymmetry factor, F, obtained by normalizing the raw difference. In the lower rows, error bars are included, but are often comparable to size of plotting symbol (l/ ,4S)-fenchone (x), (lS,4R)-fenchone (+). Data are taken from Ref. [38],... Figure 15. Circular dichroism of the C=0 C li peak (BE = 292.7 eV) in fenchone at three different photon energies, indicated, (a) Photoelectron spectrum of the carbonyl peak of the (1S,4R) enantiomer, recorded with right (solid line) and left (broken line) circularly polarized radiation at the magic angle, 54.7° to the beam direction, (b) The circular dichroism signal for fenchone for (1R,4A)-fenchone (x) and the (lS,41 )-fenchone (+) plotted as the raw difference / p — /rep of the 54.7° spectra, for example, as in the row above, (c) The asymmetry factor, F, obtained by normalizing the raw difference. In the lower rows, error bars are included, but are often comparable to size of plotting symbol (l/ ,4S)-fenchone (x), (lS,4R)-fenchone (+). Data are taken from Ref. [38],...
Figure 7.9. Effect of lateral interactions on the distribution of a single adsorbate species A on the surface. The adsorption energy of each atom A is calculated using Eq. (20) and the interaction energies indicated underthe maps. Negative energies correspond to attraction,... Figure 7.9. Effect of lateral interactions on the distribution of a single adsorbate species A on the surface. The adsorption energy of each atom A is calculated using Eq. (20) and the interaction energies indicated underthe maps. Negative energies correspond to attraction,...
Further studies were carried out on the Pd/Mo(l 1 0), Pd/Ru(0001), and Cu/Mo(l 10) systems. The shifts in core-level binding energies indicate that adatoms in a monolayer of Cu or Pd are electronically perturbed with respect to surface atoms of Cu(lOO) or Pd(lOO). By comparing these results with those previously presented in the literature for adlayers of Pd or Cu, a simple theory is developed that explains the nature of electron donor-electron acceptor interactions in metal overlayer formation of surface metal-metal bonds leads to a gain in electrons by the element initially having the larger fraction of empty states in its valence band. This behavior indicates that the electro-negativities of the surface atoms are substantially different from those of the bulk [65]. [Pg.85]

Inserting equation (6-14) into equation (6-12) retrieves the p4/3 dependence of the exchange energy indicated in equation (3-5). This exchange functional is frequently called Slater exchange and is abbreviated by S. No such explicit expression is known for the correlation part, ec. However, highly accurate numerical quantum Monte-Carlo simulations of the homogeneous electron gas are available from the work of Ceperly and Alder, 1980. [Pg.88]

The most stable structures and formation energies of zinc thiocyanate complexes have been calculated by ab initio density functional methods. The formation energies of the linkage isomers [Zn(NCS)4]2. [Zn(NCS)2(SCN)2]2, and [Zn(SCK)4]2 were determined. A comparison of the formation energies indicated that [Zn(SCN)4]2 is the most stable isomer both in water and in dimethyl sulfoxide.567... [Pg.1197]


See other pages where Energy indicators is mentioned: [Pg.1849]    [Pg.102]    [Pg.71]    [Pg.283]    [Pg.87]    [Pg.1265]    [Pg.87]    [Pg.452]    [Pg.289]    [Pg.74]    [Pg.29]    [Pg.152]    [Pg.1265]    [Pg.300]    [Pg.215]    [Pg.54]    [Pg.525]    [Pg.310]    [Pg.158]    [Pg.82]    [Pg.460]    [Pg.109]    [Pg.185]    [Pg.205]    [Pg.231]    [Pg.6]    [Pg.53]    [Pg.899]    [Pg.32]    [Pg.13]    [Pg.52]    [Pg.566]    [Pg.219]    [Pg.84]    [Pg.44]    [Pg.234]    [Pg.130]    [Pg.69]    [Pg.12]    [Pg.128]   
See also in sourсe #XX -- [ Pg.12 , Pg.16 ]




SEARCH



Energy levels, indicating

Energy sign indicating flow

Indicators, energy balance

Indicators, energy balance definition

Key energy indicator

© 2024 chempedia.info