Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy hydrogenic, variational treatment

Table 3.2.1 summarizes the results of various approximate wavefunctions for the hydrogen molecule. This list is by no means complete, but it does show that, as the level of sophistication of the trial function increases, the calculated dissociation energy and bond distance approach closer to the experimental values. In 1968, W. Kolos and L. Wolniewicz used a 100-term function to obtain results essentially identical to the experimental data. So the variational treatment of the hydrogen molecule is now a closed topic. [Pg.91]

The value of the polarizability a of an atom or molecule can be calculated by evaluating the second-order Stark effect energy — %aF2 by the methods of perturbation theory or by other approximate methods. A discussion of the hydrogen atom has been given in Sections 27a and 27e (and Problem 26-1). The helium atom has been treated by various investigators by the variation method, and an extensive approximate treatment of many-electron atoms and ions based on the use of screening constants (Sec. 33a) has also been given.3 We shall discuss the variational treatments of the helium atom in detail. [Pg.227]

T vo main streams of computational techniques branch out fiom this point. These are referred to as ab initio and semiempirical calculations. In both ab initio and semiempirical treatments, mathematical formulations of the wave functions which describe hydrogen-like orbitals are used. Examples of wave functions that are commonly used are Slater-type orbitals (abbreviated STO) and Gaussian-type orbitals (GTO). There are additional variations which are designated by additions to the abbreviations. Both ab initio and semiempirical calculations treat the linear combination of orbitals by iterative computations that establish a self-consistent electrical field (SCF) and minimize the energy of the system. The minimum-energy combination is taken to describe the molecule. [Pg.25]

Calculations based on the continuum dielectric model have been performed by the hydrated electron in the limit of zero cavity size (19). The general treatment is based on a variational calculation using hydrogenic type wave functions for the ground and the first excited states. This treatment is based on a Hartree Fock scheme, where the Coulomb and exchange interaction of the excess electron with the medium are replaced by the polarization energy of a continuous dielectric. The results obtained are summarized in Table V. The fair agreement obtained with... [Pg.28]

A long-term treatment of PS in a weak magnetic field also contributes to a short-wave shift of the OH stretching band (Fig. 2). In our recent work [5], it was found that the position of the valence absorption bands of water in PS silicon varies between 2900 and 3550 cm", which was concerned with variation of the energy of hydrogen bonds and water states in PS. This shift of the OH absorption... [Pg.300]

The Bohr model gave the correct energies for the hydrogen atom but failed when applied to helium. Hence, in the early days of quantum mechanics, it was important to show that the new theory could give an accurate treatment of helium. The pioneering work on the helium ground state was done by Hylleraas in the years 192 1930. To allow for the effect of one electron on the motion of the other, Hylleraas used variational functions that contained the interelectronic distance ri2- One function he used is... [Pg.258]

Show that a variation theory treatment of H using 4> = 6 as an unnormalized trial function yields the correct minimum-energy solution for the hydrogen atom when the specific expression for k is determined. [Pg.431]


See other pages where Energy hydrogenic, variational treatment is mentioned: [Pg.768]    [Pg.8]    [Pg.46]    [Pg.324]    [Pg.318]    [Pg.739]    [Pg.153]    [Pg.37]    [Pg.315]    [Pg.144]    [Pg.126]    [Pg.324]    [Pg.2727]    [Pg.69]    [Pg.241]    [Pg.548]    [Pg.324]    [Pg.858]    [Pg.1291]    [Pg.211]    [Pg.335]    [Pg.349]    [Pg.2726]    [Pg.818]    [Pg.707]    [Pg.292]    [Pg.405]    [Pg.264]    [Pg.270]    [Pg.288]    [Pg.153]    [Pg.437]    [Pg.321]    [Pg.124]    [Pg.288]    [Pg.98]    [Pg.171]    [Pg.1103]    [Pg.42]   
See also in sourсe #XX -- [ Pg.9 , Pg.10 ]




SEARCH



Ground state energy hydrogenic, variational treatment

Hydrogen energy

Hydrogenation energies

Variation energy

Variational Treatment

Variational energy

© 2024 chempedia.info