Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy dissipation, heat

Heat transfer in micro-channels occurs under superposition of hydrodynamic and thermal effects, determining the main characteristics of this process. Experimental study of the heat transfer in micro-channels is problematic because of their small size, which makes a direct diagnostics of temperature field in the fluid and the wall difficult. Certain information on mechanisms of this phenomenon can be obtained by analysis of the experimental data, in particular, by comparison of measurements with predictions that are based on several models of heat transfer in circular, rectangular and trapezoidal micro-channels. This approach makes it possible to estimate the applicability of the conventional theory, and the correctness of several hypotheses related to the mechanism of heat transfer. It is possible to reveal the effects of the Reynolds number, axial conduction, energy dissipation, heat losses to the environment, etc., on the heat transfer. [Pg.185]

Referring back to Equation 4.15, let us consider the effect of J". The energy loss depends on J". Because of this energy dissipation, heat will build up in the polymer with time. But J" increases with temperature. These effects are shown in Figure 4.9 for PE, for example. [Pg.87]

Carotenoids absorb visible light (Section 13 21) and dissipate its energy as heat thereby protecting the organism from any potentially harmful effects associated with sunlight induced photochemistry They are also indirectly involved m the chemistry of vision owing to the fact that p carotene is the biosynthetic precursor of vitamin A also known as retinol a key substance m the visual process... [Pg.1101]

The term pressure drop usually refers to the pressure loss that is not recoverable in the circuit, and it is lost energy that is dissipated into the fluid stream in the form of heat energy. The pressure drop in a flow circuit is associated with various forms of energy dissipation owing to friction, change in flow area, flow turning, and others ... [Pg.490]

The fact that shock waves continue to steepen until dissipative mechanisms take over means that entropy is generated by the conversion of mechanical energy to heat, so the process is irreversible. By contrast, in a fluid, rarefactions do not usually involve significant energy dissipation, so they can be regarded as reversible, or isentropic, processes. There are circumstances, however, such as in materials with elastic-plastic response, in which plastic deformation during the release process dissipates energy in an irreversible fashion, and the expansion wave is therefore not isentropic. [Pg.22]

Grady and Asay [49] estimate the actual local heating that may occur in shocked 6061-T6 Al. In the work of Hayes and Grady [50], slip planes are assumed to be separated by the characteristic distance d. Plastic deformation in the shock front is assumed to dissipate heat (per unit area) at a constant rate S.QdJt, where AQ is the dissipative component of internal energy change and is the shock risetime. The local slip-band temperature behind the shock front, 7), is obtained as a solution to the heat conduction equation with y as the thermal diffusivity... [Pg.242]

The alternative approach is to add a photodegradant which is an ultraviolet light absorber. However, instead of dissipating the absorbed energy as heat (as with conventional ultraviolet absorbers) the aim is to generate highly reactive chemical intermediates which degrade the polymer. One such material is iron dithiocarbamate. [Pg.881]

A wealthy investor has come to yon for advice. She has been approached by a biochemist who seeks financial backing for a company that would market dinitrophenol and dicnmarol as weight-loss medications. The biochemist has explained to her that these agents are nnconplers and that they would dissipate metabolic energy as heat. The investor wants to know if yon think she should invest in the biochemist s company. How do yon respond ... [Pg.706]

Dynamic mechanical tests measure the response or deformation of a material to periodic or varying forces. Generally an applied force and its resulting deformation both vary sinusoidally with time. From such tests it is possible to obtain simultaneously an elastic modulus and mechanical damping, the latter of which gives the amount of energy dissipated as heat during the deformation of the material. [Pg.44]

Damping The loss of energy, as dissipated heat, that results when a material or material system is subjected to an oscillatory load or displacement. Perfectly elastic materials have no mechanical damping. Damping reduces vibrations (mechanical and acoustical) and... [Pg.633]

Chapter 4 is devoted to single-phase heat transfer. Data on heat transfer in circular micro-tubes and in rectangular, trapezoidal and triangular ducts are presented. Attention is drawn to the effect of energy dissipation, axial conduction and wall roughness on the thermal characteristics of flow. Specific problems connected with electro-osmotic heat transfer in micro-channels, three-dimensional heat transfer in micro-channel heat sinks and optimization of micro-heat exchangers are also discussed. [Pg.3]

An experimental study of the laminar-turbulent transition in water flow in long circular micro-tubes, with diameter and length in the range of 16.6-32.2 pm and 1-30 mm, respectively, was carried out by Rands et al. (2006). The measurements allowed to estimate the effect of heat released by energy dissipation on fluid viscosity under conditions of laminar and turbulent flow in long micro-tubes. [Pg.124]

The dependence of the measured rise in fluid mixed-cup temperature on Reynolds number is illustrated in Fig. 3.12. The difference between outlet and inlet temperatures increases monotonically with increasing Re at laminar and turbulent flows. Under conditions of the given experiments, the temperature rise due to energy dissipation is very significant AT = 15—35 K at L/ i = 900—1,470 and Re = 2,500. The data on rising temperature in long micro-tubes can be presented in the form of the dependence of dimensionless viscous heating parameter Re/[Ec(L/(i)] on Reynolds number (Fig. 3.13). [Pg.125]

We can estimate the effect of energy dissipation on liquid heating and values of flow parameters corresponding to arising oscillations in the flow. We assume that the density of the fluid and its thermal conductivity are constant. Then, the energy equation attains the form... [Pg.130]

The subject of this chapter is single-phase heat transfer in micro-channels. Several aspects of the problem are considered in the frame of a continuum model, corresponding to small Knudsen number. A number of special problems of the theory of heat transfer in micro-channels, such as the effect of viscous energy dissipation, axial heat conduction, heat transfer characteristics of gaseous flows in microchannels, and electro-osmotic heat transfer in micro-channels, are also discussed in this chapter. [Pg.145]

It should be emphasized that under conditions of energy dissipation the definition of the heat transfer coefficient as k dT/dr)/ T — T ), where T is the average fluid temperature and 7 is the wall temperature, does not characterize the acmal heat transfer properly (Kays and Crawford 1993 Schlichfing 2000). [Pg.167]


See other pages where Energy dissipation, heat is mentioned: [Pg.2]    [Pg.297]    [Pg.201]    [Pg.462]    [Pg.2]    [Pg.297]    [Pg.201]    [Pg.462]    [Pg.437]    [Pg.722]    [Pg.1899]    [Pg.2747]    [Pg.384]    [Pg.141]    [Pg.423]    [Pg.499]    [Pg.152]    [Pg.449]    [Pg.533]    [Pg.116]    [Pg.1623]    [Pg.111]    [Pg.154]    [Pg.351]    [Pg.140]    [Pg.142]    [Pg.44]    [Pg.1140]    [Pg.311]    [Pg.156]    [Pg.160]    [Pg.613]    [Pg.279]    [Pg.126]    [Pg.130]    [Pg.130]    [Pg.132]    [Pg.147]   
See also in sourсe #XX -- [ Pg.279 ]




SEARCH



Dissipated heat

Heat dissipation

Heat energy

Heating energy

© 2024 chempedia.info