Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic substitution thiazole

The greater reactivity of the 5-position of selenazoles, compared to thiazoles, toward electrophilic substitution has also been demonstrated (19). Substituents in the 2-position possessing a mesomeric donor effect increase the reactivity, but, as Haginiwa (19) observed, also increase the tendancy to ring Opening,... [Pg.240]

Despite its V excessive character (340), thiazole, just as pyridine, is resistant to electrophilic substitution. In both cases the ring nitrogen deactivates the heterocyclic nucleus toward electrophilic attack. Moreover, most electrophilic substitutions, which are performed in acidic medium, involve the protonated form of thiazole or some quaternary thiazolium derivatives, whose reactivity toward electrophiles is still lower than that of the free base. [Pg.99]

From these results it appears that the 5-position of thiazole is two to three more reactive than the 4-position, that methylation in the 2-position enhances the rate of nitration by a factor of 15 in the 5-position and of 8 in the 4-position, that this last factor is 10 and 14 for 2-Et and 2-t-Bu groups, respectively. Asato (374) and Dou (375) arrived at the same figure for the orientation of the nitration of 2-methyl and 2-propylthiazole Asato used nitronium fluoroborate and the dinitrogen tetroxide-boron trifluoride complex at room temperature, and Dou used sulfonitric acid at 70°C (Table T54). About the same proportion of 4-and 5-isomers was obtained in the nitration of 2-methoxythiazole by Friedmann (376). Recently, Katritzky et al. (377) presented the first kinetic studies of electrophilic substitution in thiazoles the nitration of thiazoles and thiazolones (Table 1-55). The reaction was followed spec-trophotometrically and performed at different acidities by varying the... [Pg.104]

Hydrogen exchange, in thiazole, especially deuteration, has been quantitatively investigated (379,380), but the mechanism of the reaction carried out at acidic or neutral pH corresponds to a protonation-deprotonation process (380), different from electrophilic substitution and is discussed in section I.3.E. [Pg.106]

Another quantitative approach to the reactivity of thiazole (381) in reactions involving a cationic transition state, though not exactly of the electrophilic substitution type, deserves to be mentioned here because of... [Pg.106]

In agreement with the theory of polarized radicals, the presence of substituents on heteroaromatic free radicals can slightly affect their polarity. Both 4- and 5-substituted thiazol-2-yl radicals have been generated in aromatic solvents by thermal decomposition of the diazoamino derivative resulting from the reaction of isoamyl nitrite on the corresponding 2-aminothiazole (250,416-418). Introduction in 5-position of electron-withdrawing substituents slightly enhances the electrophilic character of thiazol-2-yl radicals (Table 1-57). [Pg.113]

The thiazolyl radicals are, in comparison to the phenyl radical, electrophilic as shown by isomer ratios obtained in reaction with different aromatic and heteroaromatic compounds. Sources of thiazolyl radicals are few the corresponding peroxide and 2-thiazolylhydrazine (202, 209, 210) (see Table III-34) are convenient reagents, and it is the reaction of an alky] nitrite (jsoamyl) on the corresponding (2-, 4-, or 5-) amine that is most commonly used to produce thiazolyl radicals (203-206). The yields of substituted thiazole are around 40%. These results are summarized in Tables III-35 and IIT36. [Pg.370]

The electronic densities on the thiazole nucleus or on the thiazolium ion suggest that electrophilic substitution should occur preferentially at the 5-position. The order of tt electronic densities is 2<4<5 (163,164). [Pg.380]

The most widely studied electrophilic substitution reactions are haloge-nation and nitration. Two main types of substrates are possible alkyl-thiazoles and arylthiazoles. [Pg.380]

Axylthiazoles undergo electrophilic substitution mainly in the para-position of the phenyl ring. In some cases, it is also possible to substitute the 5-position of the thiazole nucleus (244-246). [Pg.382]

Results for the neutral pyrazole molecule show a considerable spread. The tt-electron and total (Tr-l-cr) densities predict electrophilic substitution at the 4-position as found. Results for thiazole also agree with experimentally determined electrophilic and nucleophilic reactivity. [Pg.6]

A multiply bonded nitrogen atom deactivates carbon atoms a or y to it toward electrophilic attack thus initial substitution in 1,2- and 1,3-dihetero compounds should be as shown in structures (110) and (111). Pyrazoles (110 Z = NH), isoxazoles (110 Z = 0), isothiazoles (110 Z = S), imidazoles (111 Z = NH, tautomerism can make the 4- and 5-positions equivalent) and thiazoles (111 Z = S) do indeed undergo electrophilic substitution as expected. Little is known of the electrophilic substitution reactions of oxazoles (111 Z = O) and compounds containing three or more heteroatoms in one ring. Deactivation of the 4-position in 1,3-dihetero compounds (111) is less effective because of considerable double bond fixation (cf. Sections 4.01.3.2.1 and 4.02.3.1.7), and if the 5-position of imidazoles or thiazoles is blocked, substitution can occur in the 4-position (112). [Pg.56]

Imidazo[ 1,2-e]thiazoles biological activity, 6, 1024 reactions, 6, 1041 synthesis, 6, 1048 Imidazo[2, l-6]thiazoles electrophilic substitution, 6, 979 synthesis, 6, 992, 993, 1010, 1018 Imidazo[3,l-6]thiazoles synthesis, 6, 986 Imidazo[5,l-6]thi azoles biological activity, 6, 1024 synthesis, 6, 1017 Imidazo[2,l-6]thiazolium chloride synthesis, 6, 1013... [Pg.663]

It has also been stated that the 5-position of selenazoles is more reactive toward electrophilic substitution than that of thiazoles. Such reactivity is still further increased by substituents in the 2-position of the selenazole ring, which can have an —E-effect. Simultaneously, however, an increasing tendency toward ring fission was observed by Haginiwa. Reactions of the selenazole ring are thus limited mainly to the 5-position which, specially in the 2-amino-and the 2-hydrazino-selenazoles, is easily substituted by electrophilic reagents. However, all attempts to synthesize selenazole derivatives by the Gattermann and by the Friedel-Crafts methods... [Pg.354]

Furthermore, the strongly metallic character of selenium weakens the C-Se bond and thus favors reactions involving opening of the ring. The basicity of the three heterocycles is approximately in the same order, the nitrogen atom of selenazole and thiazole possessing much the same properties as the heteroatom of pyridine. Of the two carbon atoms ortho to nitrogen, that is, the 2-carbon and the 4-carbon, only the one in the 2-position is fairly active as a result of its interaction with selenium or sulfur. The 4- and 5-positions of thiazole and selenazole are more susceptible to electrophilic substitution than the 3- and 5-positions of pyridine. This is particularly true of the 5-position of selenazole. Thus it can be said that the 2- and 5-positions of the selenazoles and thiazoles... [Pg.309]

In one possible mechanism, oxidative addition of iodobenzene to Pd(0) gives Pd(II) intermediate 74, which subsequently inserts into thiazole regioselectively at the C(5) position to form the a-adduct of arylpalladium(II) 75. The order of reactivity is similar to the electrophilic substitution, which is known to be C(5) > C(4) > C(2) [74]. Treatment of the insertion adduct 75 with a base regains the aromaticity after deprotonation, giving rise to 73 along with Pd(0) for the next catalytic cycle. [Pg.17]

Thiazole is a jt-electron-excessive heterocycle. The electronegativity of the N-atom at the 3-position makes C(2) partially electropositive and therefore susceptible to nucleophilic attack. In contrast, electrophilic substitution of thiazoles preferentially takes place at the electron-rich C(5) position. More relevant to palladium chemistry, 2-halothiazoles and 2-halobenzothiazoles are prone to undergo oxidative addition to Pd(0) and the resulting o-heteroaryl palladium complexes participate in various coupling reactions. Even 2-chlorothiazole and 2-chlorobenzothiazole are viable substrates for Pd-catalyzed reactions. [Pg.297]

Although thiazoles structurally resemble imidazoles and oxazoles, they are less reactive with electrophiles. Calculated 7r-densities (48BSF1021) and localization energies (61CCC156) largely agree with experimental observations that positional specificities for electrophilic substitution are 5... [Pg.365]

Electrophilic substitutions Although oxazole, imidazole and thiazoles are not very reactive towards aromatic electrophilic substitution reactions, the presence of any electron-donating group on the ring can facilitate electrophilic substitution. For example, 2-methoxythiazole is more reactive... [Pg.157]

Electrophilic substitution reactions of oxazoles, imidazoles, and thiazoles... [Pg.24]

Electrophilic substitution reactions of substituted 2,1-benziso-thiazoles have already been discussed. The only other functionally substituted compound so far studied in any detail is the 3-amino derivative (87). This compound is readily diazotized and the dia-zonium salt formed (88) couples with tertiary aromatic amines yielding azo dyes.117,119-121 The salt (88) also undergoes the usual Sandmeyer reactions, and other 3-substituted derivatives, such as the cyano compound (89) may be prepared.111 Acylation of the amine (87) yields diacyl derivatives which appear to possess the 3-acylimino structure (90).111... [Pg.72]


See other pages where Electrophilic substitution thiazole is mentioned: [Pg.18]    [Pg.239]    [Pg.91]    [Pg.100]    [Pg.126]    [Pg.91]    [Pg.316]    [Pg.291]    [Pg.24]    [Pg.67]    [Pg.68]    [Pg.367]    [Pg.158]    [Pg.389]    [Pg.444]    [Pg.169]    [Pg.24]    [Pg.247]    [Pg.16]    [Pg.292]    [Pg.131]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



2- thiazoles, substituted

© 2024 chempedia.info