Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic aromatic substitution reactions electrophile strength

Bifunctional catalysis in nucleophilic aromatic substitution was first observed by Bitter and Zollinger34, who studied the reaction of cyanuric chloride with aniline in benzene. This reaction was not accelerated by phenols or y-pyridone but was catalyzed by triethylamine and pyridine and by bifunctional catalysts such as a-pyridone and carboxylic acids. The carboxylic acids did not function as purely electrophilic reagents, since there was no relationship between catalytic efficiency and acid strength, acetic acid being more effective than chloracetic acid, which in turn was a more efficient catalyst than trichloroacetic acid. For catalysis by the carboxylic acids Bitter and Zollinger proposed the transition state depicted by H. [Pg.414]

The difference in position of attack on primary and secondary aromatic amines, compared with phenols, probably reflects the relative electron-density of the various positions in the former compounds exerting the controlling influence for, in contrast to a number of other aromatic electrophilic substitution reactions, diazo coupling is sensitive to relatively small differences in electron density (reflecting the rather low ability as an electrophile of PhN2 ). Similar differences in electron-density do of course occur in phenols but here control over the position of attack is exerted more by the relative strengths of the bonds formed in the two products in the two alternative coupled products derivable from amines, this latter difference is much less marked. [Pg.148]


See other pages where Electrophilic aromatic substitution reactions electrophile strength is mentioned: [Pg.387]    [Pg.201]    [Pg.9]    [Pg.31]    [Pg.182]    [Pg.200]    [Pg.26]    [Pg.348]    [Pg.426]    [Pg.314]    [Pg.420]    [Pg.873]    [Pg.213]    [Pg.503]    [Pg.183]   
See also in sourсe #XX -- [ Pg.8 , Pg.9 ]




SEARCH



Aromaticity electrophilic aromatic substitution

Aromatics electrophilic substitution

Electrophile Electrophilic aromatic substitution

Electrophile reactions Electrophilic aromatic

Electrophile, strength

Electrophilic aromatic reactions

Electrophilic substitution reaction

Substitution electrophilic aromatic

Substitution electrophilic aromatic substitutions

Substitution reactions aromatic

Substitution reactions electrophile

Substitution reactions electrophilic aromatic

© 2024 chempedia.info