Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic amination Friedel-Crafts alkylation

Two years after the discovery of the first asymmetric Br0nsted acid-catalyzed Friedel-Crafts alkylation, the You group extended this transformation to the use of indoles as heteroaromatic nucleophiles (Scheme 11). iV-Sulfonylated aldimines 28 are activated with the help of catalytic amounts of BINOL phosphate (5)-3k (10 mol%, R = 1-naphthyl) for the reaction with unprotected indoles 29 to provide 3-indolyl amines 30 in good yields (56-94%) together with excellent enantioselec-tivities (58 to >99% ee) [21], Antilla and coworkers demonstrated that A-benzoyl-protected aldimines can be employed as electrophiles for the addition of iV-benzylated indoles with similar efficiencies [22]. Both protocols tolerate several aryl imines and a variety of substituents at the indole moiety. In addition, one example of the use of an aliphatic imine (56%, 58% ee) was presented. [Pg.406]

Ferrocene reacts with acetyl chloride and aluminum chloride to afford the acylated product (287) (Scheme 84). The Friedel-Crafts acylation of (284) is about 3.3 x 10 times faster than that of benzene. Use of these conditions it is difficult to avoid the formation of a disubstituted product unless only a stoichiometric amount of AlCft is used. Thus, while the acyl substituent present in (287) is somewhat deactivating, the relative rate of acylation of (287) is still rapid (1.9 x 10 faster than benzene). Formation of the diacylated product may be avoided by use of acetic anhydride and BF3-Et20. Electrophilic substitution of (284) under Vilsmeyer formylation, Maimich aminomethylation, or acetoxymercuration conditions gives (288), (289), and (290/291), respectively, in good yields. Racemic amine (289) (also available in two steps from (287)) is readily resolved, providing the classic entry to enantiomerically pure ferrocene derivatives that possess central chirality and/or planar chirality. Friedel Crafts alkylation of (284) proceeds with the formation of a mixture of mono- and polyalkyl-substituted ferrocenes. The reaction of (284) with other... [Pg.2069]

The Stolle reaction is thought to occur via a typical mechanism for amide formation from an amine and acid chloride, followed by Friedel-Crafts alkylation or acylation. No definitive mechanistic work has been performed on this reaction, but incorporating the mechnistic understandings of two steps provides a firm basis for understanding the mechanism of this reaction. Formation of the mono-amide from oxalyl chloride and aniline provides intermediate 4, which in the presence of AICI3 undergoes intramolecular electrophilic aromatic substitution to the desired 2,3-dioxindole (isatin) 7 via intermediates 5 and 6. [Pg.208]

Many structures included an aromatic subunit. At the time, synthetic aromatic chemistry was at its height and electrophilic aromatic substitution reactions (SE-reac-tions) such as Friedel-Crafts alkylations [37] and acylations [38], nitrations [39] and diazotisations [40] were effectively used. Vorlander and others centred most procedures for the elongation of rod-like structures on carbonyl-reactions. It must be noted, however, that the scope of most of these reactions had not been realized until the late 1940s. Typical preparations of imines/anils (azines) [41] via aldehyde/ketone-amine/ aniline (hydrazine) condensations have remained standard synthetic methods of today [42] (Scheme 3). [Pg.127]

NaH, dimethylformamide (DMF), CH3I], undergoes electrophilic nitration (89), Friedel-Crafts acylation (90), and alkylation (91) at the C-9 position. Although attempts to effeet a Baeyer-Villiger oxidation of ketone 90 were successful, the route was laborious since oxidation to amine oxide 92 preceded oxidation of the methyl ketone 90. However, a Dakin reaction of aldehyde 91 gave 9-hydroxy-6-methylellipticine (93) in excellent yield. It remains to be seen if this methodology can be extended to an N-unsubstituted ellipticine. [Pg.256]

Reactions with Electrophiles. The structure of isoquinoline 1 is the result of fusing benzene and pyridine together. Electrophilic aromatic substitution predominately occurs on the benzene ring under acidic conditions and usually addition takes place at the 5-position but can sometimes add to the 8-position. The rate of electrophilic aromatic substitution is slower for isoquinoline compared to naphthalene. The nitrogen in isoquinoline reacts similar to a pyridine nitrogen and will add a variety of electrophilic species such as 0-(2,4-dinitrophenyl)hydroxylamine 2 to aminate the nitrogen (eq 1). Friedel-Crafts acylation and alkylation do not work due to the formation of IV-acyl or IV-alkyl isoquinolinium salts. [Pg.367]


See other pages where Electrophilic amination Friedel-Crafts alkylation is mentioned: [Pg.158]    [Pg.572]    [Pg.40]    [Pg.572]    [Pg.572]    [Pg.40]    [Pg.40]    [Pg.171]    [Pg.572]    [Pg.271]    [Pg.602]    [Pg.549]    [Pg.55]    [Pg.55]    [Pg.324]    [Pg.503]    [Pg.403]    [Pg.223]   
See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Alkylation alkyl electrophiles

Alkylative amination

Amines alkylation

Electrophiles alkylation

Electrophilic alkylation

Electrophilic aminations

Friedel Crafts alkylation

Friedel-Crafts alkylations

Friedel-Crafts electrophiles

© 2024 chempedia.info