Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic Structure and Periodic Trends

Molecular orbital (MO) theory includes a series of quantum mechanical methods for describing the behavior of electrons in molecules by combining the familiar s, p, d, and / atomic orbitals (AOs) of the individual atoms to form MOs that extend over the molecule as a whole. The accuracy of the calculations critically depends on the way the interactions between the electrons (electron correlation) are handled. More exact treatments generally require more computer time, so the problem is to find methods that give acceptable accuracy for systems of chemical interest without excessive use of computer time. For many years, the extended Hiickel (EH) method was widely used in organometallic chemistry, largely thanks to the exceptionally insightful contributions of Roald Hoffmann. The EH method allowed structural and reactivity trends to be discussed in terms of the interactions of specific molecular orbitals. Fenske-Hall methods also proved very useful in this period. ... [Pg.304]

The trends in chemical and physical properties of the elements described beautifully in the periodic table and the ability of early spectroscopists to fit atomic line spectra by simple mathematical formulas and to interpret atomic electronic states in terms of empirical quantum numbers provide compelling evidence that some relatively simple framework must exist for understanding the electronic structures of all atoms. The great predictive power of the concept of atomic valence further suggests that molecular electronic structure should be understandable in terms of those of the constituent atoms. [Pg.7]

On the basis of the Periodic Table, topics of intermetallic systematics will be presented in the next chapter. In the present chapter the Periodic Table will be revisited and its structure and subdivisions summarized. In relation also to some concepts previously presented, such as electronegativity, Mendeleev number, etc. described in Chapter 2, typical property trends along the Table will be shown. Strictly related concepts, such as Periodic Table group number, average group number and valence-electron number will be considered and used in the description and classification of intermetallic phase families. [Pg.219]

Comments on some trends and on the Divides in the Periodic Table. It is clear that, on the basis also of the atomic structure of the different elements, the subdivision of the Periodic Table in blocks and the consideration of its groups and periods are fundamental reference tools in the description and classification of the properties and behaviour of the elements and in the definition of typical trends in such characteristics. Well-known chemical examples are the valence-electron numbers, the oxidation states, the general reactivity, etc. As far as the intermetallic reactivity is concerned, these aspects will be examined in detail in the various paragraphs of Chapter 5 where, for the different groups of metals, the alloying behaviour, its trend and periodicity will be discussed. A few more particular trends and classification criteria, which are especially relevant in specific positions of the Periodic Table, will be summarized here. [Pg.229]

A theoretical foundation for understanding these correlations is found in the calculated bulk electronic structures of the first- and second-row TMS. The electronic environment of the metal surrounded by six sulfur atoms in an octahedral configuration was calculated, using the hypotheses that all the sulfides could be represented by this symmetry as an approximation. There are several electronic factors that appear to be related to catalytic activity the orbital occupation of the HOMO (Highest Occupied Molecular Orbital), the degree of covalency of the metal-sulfur bond, and the metal-sulfur bond strength. These factors were incorporated into an activity parameter (A2), which correlates well with the periodic trends (Fig. 16) (74, 75). This parameter is equal to the product of the number of electrons contained in the... [Pg.206]

The most obvious chemical significance of the electronic structure of atoms lies in the factors that determine ionization energies, electron affinities, and the sizes of atoms. This section looks briefly at some of the trends— vertically and horizontally in the periodic table—in such properties. [Pg.82]


See other pages where Electronic Structure and Periodic Trends is mentioned: [Pg.134]    [Pg.136]    [Pg.138]    [Pg.140]    [Pg.142]    [Pg.144]    [Pg.146]    [Pg.148]    [Pg.150]    [Pg.152]    [Pg.154]    [Pg.156]    [Pg.158]    [Pg.160]    [Pg.162]    [Pg.162]    [Pg.164]    [Pg.166]    [Pg.733]    [Pg.134]    [Pg.136]    [Pg.138]    [Pg.140]    [Pg.142]    [Pg.144]    [Pg.146]    [Pg.148]    [Pg.150]    [Pg.152]    [Pg.154]    [Pg.156]    [Pg.158]    [Pg.160]    [Pg.162]    [Pg.162]    [Pg.164]    [Pg.166]    [Pg.733]    [Pg.97]    [Pg.141]    [Pg.5]    [Pg.382]    [Pg.334]    [Pg.2]    [Pg.5]    [Pg.364]    [Pg.66]    [Pg.234]    [Pg.230]    [Pg.150]    [Pg.160]    [Pg.270]    [Pg.353]    [Pg.173]    [Pg.263]    [Pg.353]    [Pg.206]    [Pg.181]    [Pg.131]    [Pg.57]   


SEARCH



Periodic electronic structures

Periodic trend

Periodical Structures

Periodicity and trends

Structure and Periodicity

© 2024 chempedia.info