Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transport connections

It should be emphasized here that the four major complexes of the electron transport chain operate quite independently in the inner mitochondrial membrane. Each is a multiprotein aggregate maintained by numerous strong associations between peptides of the complex, but there is no evidence that the complexes associate with one another in the membrane. Measurements of the lateral diffusion rates of the four complexes, of coenzyme Q, and of cytochrome c in the inner mitochondrial membrane show that the rates differ considerably, indicating that these complexes do not move together in the membrane. Kinetic studies with reconstituted systems show that electron transport does not operate by means of connected sets of the four complexes. [Pg.691]

P. Mitchell (Nobel Prize for Chemistry, 1978) explained these facts by his chemiosmotic theory. This theory is based on the ordering of successive oxidation processes into reaction sequences called loops. Each loop consists of two basic processes, one of which is oriented in the direction away from the matrix surface of the internal membrane into the intracristal space and connected with the transfer of electrons together with protons. The second process is oriented in the opposite direction and is connected with the transfer of electrons alone. Figure 6.27 depicts the first Mitchell loop, whose first step involves reduction of NAD+ (the oxidized form of nicotinamide adenosine dinucleotide) by the carbonaceous substrate, SH2. In this process, two electrons and two protons are transferred from the matrix space. The protons are accumulated in the intracristal space, while electrons are transferred in the opposite direction by the reduction of the oxidized form of the Fe-S protein. This reduces a further component of the electron transport chain on the matrix side of the membrane and the process is repeated. The final process is the reduction of molecular oxygen with the reduced form of cytochrome oxidase. It would appear that this reaction sequence includes not only loops but also a proton pump, i.e. an enzymatic system that can employ the energy of the redox step in the electron transfer chain for translocation of protons from the matrix space into the intracristal space. [Pg.477]

Shizgal et al. (1989) have listed a large number of processes that require an understanding of electron thermalization in the gas phase. These range from radiation physics and chemistry to radiation biology, and connect such diverse fields as electron transport, laser systems, nuclear fusion, and plasma chemistry. Certainly, this list is not exhaustive. [Pg.250]

Unlike the photosynthetic apparatus of photosynthetic bacteria, that of cyanobacteria consits of two photosystems, PS I and II, connected by an electron transport chain. The only chlorophyll present is chlorophyll a, and, therefore, chlorophylls b—d are not of interest in this article. Chlorophyll a is the principal constituent of PS I. Twenty per cent of isolated pigment-protein complexes contain one P700 per 20—30 chlorophyll a molecules the other 80% contain only chlorophyll a20). The physical and chemical properties of chlorophyll a and its role in photosynthesis have recently been described by Meeks77), Mauzerall75), Hoch60), Butler10), and other authors of the Encyclopedia of Plant Physiology NS Vol. 5. [Pg.118]

The cytochrome b(6)f complex mediates electron transfer between the PSI and PSII reaction centers by oxidizing hpophUic plastoquinol (PQH2) (see Figure 7.24) and reducing the enzymes plastocyanin or cytochrome Ce. The electronic connection also generates a transmembrane electrochemical proton gradient that can support adenosine triphosphate (ATP) synthesis instead of electron transport. [Pg.383]

As in the xenognosins, the presence of at least one methoxy functionality appears to be of critical Importance. All three Isomeric dimethoxyquinones fulfill this requirement, but only 2,3-DMBQ (6) and 2,6-DMBQ (4) induce haustoria. Both compounds have been shown to inhibit mitochondrial electron transport (25,26). In contrast, the 2,5-isomer (5) shows no such inhibition of respiration and does not induce haustoria. A possible connection between the inhibition of electron transport and the haustoria-inducing activity of these quinones has yet to be clarified. [Pg.554]

Fig. 20 Schematic representation of a two-terminal device. The scattering region (enclosed in the dashed-line frame) with transmission probability T(E) is connected to semi-infinite left (L) and right (R) leads which end in electronic reservoirs (not shown) at chemical potentials Eu and r, kept fixed at the same value p for linear transport. By applying a small potential difference electronic transport will occur. The scattering region or molecule may include in general parts of the leads (shaded areas) (adapted from [105] with permission Copyright 2002 by Springer)... Fig. 20 Schematic representation of a two-terminal device. The scattering region (enclosed in the dashed-line frame) with transmission probability T(E) is connected to semi-infinite left (L) and right (R) leads which end in electronic reservoirs (not shown) at chemical potentials Eu and r, kept fixed at the same value p for linear transport. By applying a small potential difference electronic transport will occur. The scattering region or molecule may include in general parts of the leads (shaded areas) (adapted from [105] with permission Copyright 2002 by Springer)...
Current estimates are that three protons move into the matrix through the ATP-synthase for each ATP that is synthesized. We see below that one additional proton enters the mitochondrion in connection with the uptake of ADP and Pi and export of ATP, giving a total of four protons per ATP. How does this stoichiometry relate to the P-to-O ratio When mitochondria respire and form ATP at a constant rate, protons must return to the matrix at a rate that just balances the proton efflux driven by the electron-transport reactions. Suppose that 10 protons are pumped out for each pair of electrons that traverse the respiratory chain from NADH to 02, and 4 protons move back in for each ATP molecule that is synthesized. Because the rates of proton efflux and influx must balance, 2.5 molecules of ATP (10/4) should be formed for each pair of electrons that go to 02. The P-to-O ratio thus is given by the ratio of the proton stoichiometries. If oxidation of succinate extrudes six protons per pair of electrons, the P-to-O ratio for this substrate is 6/4, or 1.5. These ratios agree with the measured P-to-O ratios for the two substrates. [Pg.321]

Biological Implications of Structural and Electrical Properties of Lipids. It is rather obvious that the structure of lipids is very important in connection with the function of living cells since most physiological processes occur in lipid environment. There is, for example, evidence that lipid-protein complexes are necessary for the proper functioning of mitochondria (56). Although lipids are most important in providing a suitable material for functional complexes (ionic channels, electron transport systems, receptor units, etc.), their own physical properties are certainly... [Pg.72]

Compared with typical aerobic mitochondria, the three main distinctions of these anaerobic mitochondria are (i) the enzyme catalyzing the conversion of fumarate to succinate (ii) the quinone that connects this electron transfer to the enzyme complex in the electron-transport chain and (iii) the presence of ASCT, which converts acetyl-CoA into acetate. These characteristic features of anaerobically functioning... [Pg.395]

We describe here that the redox oligomer wires fabricated with the stepwise coordination method show characteristic electron transport behavior distinct from conventional redox polymers. Redox polymers are representative electron-conducting substances in which redox species are connected to form a polymer wire.21-25 The electron transport was treated according to the concept of redox conduction, based on the dilfusional motion of collective electron transfer pathways, composed of electron hopping terms and/or physical diffusion.17,18,26-30 In the characterization of redox conduction, the Cottrell equation can be applied to the initial current—time curve after the potential step in potential step chronoamperometry (PSCA), which causes the redox reaction of the redox polymer film ... [Pg.395]

While molecular assembly has proven to be effective for a photoelectric conversion system, coordination reactions are possibly a simple approach for connecting such functional molecules, as presented in the previous section. We applied the stepwise coordination method to prepare a photoelectric conversion system. Since the molecular wire exhibits redox conduction through the wire,11,13 efficient photo-electron transport through the redox sites in the wire is also expected. In this section, we demonstrate the fabrication of a photoelectric conversion system using ITO electrodes modified with M(tpy)2 (M = Co, Fe, Zn) complex wires with a terminal porphyrin moiety as a photosensitizer. The behavior of photo-electron transfer from porphyrin to ITO through the molecular wire was investigated by changing the metal element in the M(tpy)2 moieties.14... [Pg.401]


See other pages where Electron transport connections is mentioned: [Pg.651]    [Pg.327]    [Pg.300]    [Pg.302]    [Pg.293]    [Pg.71]    [Pg.284]    [Pg.183]    [Pg.31]    [Pg.501]    [Pg.33]    [Pg.633]    [Pg.41]    [Pg.100]    [Pg.229]    [Pg.63]    [Pg.675]    [Pg.859]    [Pg.314]    [Pg.342]    [Pg.292]    [Pg.63]    [Pg.400]    [Pg.408]    [Pg.409]    [Pg.83]    [Pg.148]    [Pg.363]    [Pg.365]    [Pg.366]    [Pg.281]    [Pg.457]    [Pg.2]   
See also in sourсe #XX -- [ Pg.176 ]

See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Electron transporter

Electron transporting

Electronic connections

The Connection between Electron Transport and Phosphorylation

© 2024 chempedia.info