Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer reduction alcohols

The experimental observation is that hydride reduction (Felkin-Anh control) of the ketone 7.153 gives the anti-alcohol anti-7.154 as the major product, but electron-transfer reduction gives its syn diastereoisomer syn-7.154.1067 This is in contrast to the reduction on p. 423, which differs in having a silyl group on the oxygen atom in a neutral radical. [Pg.396]

In the case of a 17-oxosteroid, 3-methoxy-14a-melhylestra-l,3.5(10)-trien-17-one. reduction with sodium/2-propanol provided the 17-alcohols in 84 6 ratio (/ /a)19. MMX calculations19 suggest a ratio of 85 15 (/ / ) at equilibrium. Thus, the single electron transfer reduction provided the more stable cyclopentanol. [Pg.676]

Strong indications exist that the overall rate of the reduction process depends on the rate of decay of the intermediate nitroarene radical anion ArN02 to the dianion species ArN022-. It is not known whether this step occurs via second-order dismutation (equation 11) or electron transfer from alcohol-derived reducing radicals formed in the process. [Pg.346]

The mechanism by which the Birch reduction of benzene takes place (Figure 118) IS analogous to the mechanism for the metal-ammonia reduction of alkynes It involves a sequence of four steps m which steps 1 and 3 are single electron transfers from the metal and steps 2 and 4 are proton transfers from the alcohol... [Pg.439]

Reduction of Ketones and Enones. Although the method has been supplanted for synthetic purposes by hydride donors, the reduction of ketones to alcohols in ammonia or alcohols provides mechanistic insight into dissolving-metal reductions. The outcome of the reaction of ketones with metal reductants is determined by the fate of the initial ketyl radical formed by a single-electron transfer. The radical intermediate, depending on its structure and the reaction medium, may be protonated, disproportionate, or dimerize.209 In hydroxylic solvents such as liquid ammonia or in the presence of an alcohol, the protonation process dominates over dimerization. Net reduction can also occur by a disproportionation process. As is discussed in Section 5.6.3, dimerization can become the dominant process under conditions in which protonation does not occur rapidly. [Pg.435]

Dissolving-Metal Reduction of Aromatic Compounds and Alkynes. Dissolving-metal systems constitute the most general method for partial reduction of aromatic rings. The reaction is called the Birch reduction,214 and the usual reducing medium is lithium or sodium in liquid ammonia. An alcohol is usually added to serve as a proton source. The reaction occurs by two successive electron transfer/proto-nation steps. [Pg.436]

Oxidation of ascorbate (reduction of 02 to H20) Oxidation of primary alcohols to aldehydes in sugars (reduction of 02 to 11202) Removal of amines and diamines Electron-transfer... [Pg.338]

Extensive studies have established that the catalytic cycle for the reduction of hydroperoxides by horseradish peroxidase is the one depicted in Figure 6 (38). The resting enzyme interacts with the peroxide to form an enzyme-substrate complex that decomposes to alcohol and an iron-oxo complex that is two oxidizing equivalents above the resting state of the enzyme. For catalytic turnover to occur the iron-oxo complex must be reduced. The two electrons are furnished by reducing substrates either by electron transfer from substrate to enzyme or by oxygen transfer from enzyme to substrate. Substrate oxidation by the iron-oxo complex supports continuous hydroperoxide reduction. When either reducing substrate or hydroperoxide is exhausted, the catalytic cycle stops. [Pg.317]

S ilylation-intramolecular reduction, ketone-alcohol reduction, 78-79 Single-electron transfer (SET) process, alkyl halides and triflate reduction to alkanes, 28-31... [Pg.755]

The electrochemical reduction of aryllead triacetates was smdied by Chobert and Devaud82, as a re-examination of some previous work83 to detect the role of intermediates such as [ArPb(OAc)2]V The reductions were carried out by polarography in acetic acid or acidic alcohol solutions and show three diffusion controlled waves. The first step involves a single electron transfer to produce a radical anion which dimerizes, arylates the electrode or hydrolyzes to phenol ... [Pg.679]

Since many of the transformations undergone by metabolites involve changes in oxidation state, it is understandable that cofactors have been developed to act as electron acceptors/ donors. One of the most important is that based on NAD/NADP. NAD+ can accept what is essentially two electrons and a proton (a hydride ion) from a substrate such as ethanol in a reaction catalysed by alcohol dehydrogenase, to give the oxidized product, acetaldehyde and the reduced cofactor NADH plus a proton (Figure 5.2). Whereas redox reactions on metal centres usually involve only electron transfers, many oxidation/reduction reactions in intermediary metabolism, as in the case above, involve not only electron transfer but... [Pg.78]

Few studies have systematically examined how chemical characteristics of organic reductants influence rates of reductive dissolution. Oxidation of aliphatic alcohols and amines by iron, cobalt, and nickel oxide-coated electrodes was examined by Fleischman et al. (38). Experiments revealed that reductant molecules adsorb to the oxide surface, and that electron transfer within the surface complex is the rate-limiting step. It was also found that (i) amines are oxidized more quickly than corresponding alcohols, (ii) primary alcohols and amines are oxidized more quickly than secondary and tertiary analogs, and (iii) increased chain length and branching inhibit the reaction (38). The three different transition metal oxide surfaces exhibited different behavior as well. Rates of amine oxidation by the oxides considered decreased in the order Ni > Co >... [Pg.457]

Cleavage of C—O bonds by direct electron transfer from a cathode is usually difficult because of the negative reduction potential of the bond. Therefore, the reduction of aliphatic alcohols (R-OH) to the corresponding hydrocarbons (R-H) is often carried out by the transformation of hydroxyl groups to good leaving groups such as halides (X = Br, I), methanesulfonates (OMs), and... [Pg.201]

Because of the highly negative reduction potentials ( —3.0 V vs. SCE) [32], the electroreduction of esters of aliphatic carboxylic acids to primary alcohols by direct electron transfer from the cathode is very difficult and the electrochemical Birch-type reduction of aliphatic esters in MeNH2 or liquid NH3 has not been reported until recently (Scheme 15) [33, 34]. This reaction is not a reduction by direct electron transfer from the cathode to the C=0 bonds of the ester but the reduction by a solvated electron. [Pg.205]

Various transition metals have been used in redox processes. For example, tandem sequences of cyclization have been initiated from malonate enolates by electron-transfer-induced oxidation with ferricenium ion Cp2pe+ (51) followed by cyclization and either radical or cationic termination (Scheme 41). ° Titanium, in the form of Cp2TiPh, has been used to initiate reductive radical cyclizations to give y- and 5-cyano esters in a 5- or 6-exo manner, respectively (Scheme 42). The Ti(III) reagent coordinates both to the C=0 and CN groups and cyclization proceeds irreversibly without formation of iminyl radical intermediates.The oxidation of benzylic and allylic alcohols in a two-phase system in the presence of r-butyl hydroperoxide, a copper catalyst, and a phase-transfer catalyst has been examined. The reactions were shown to proceed via a heterolytic mechanism however, the oxidations of related active methylene compounds (without the alcohol functionality) were determined to be free-radical processes. [Pg.143]

The final reactions to be considered in the metabolism of ethanol in the liver are those involved in reoxidation of cytosolic NADH and in the reduction of NADP. The latter is achieved by the pentose phosphate pathway which has a high capacity in the liver (Chapter 6). The cytosolic NADH is reoxidised mainly by the mitochondrial electron transfer system, which means that substrate shuttles must be used to transport the hydrogen atoms into the mitochondria. The malate/aspartate is the main shuttle involved. Under some conditions, the rate of transfer of hydrogen atoms by the shuttle is less than the rate of NADH generation so that the redox state in the cytosolic compartment of the liver becomes highly reduced and the concentration of NAD severely decreased. This limits the rate of ethanol oxidation by alcohol dehydrogenase. [Pg.327]

The dispersity or homogeneity of the reductant in a reaction system sometimes plays a decisive role. It is also important for synthetic practice. Crandall and Mualla (1986) compared reduction of 7-methylocta-5,6-diene-2-one [H3C-C(CH3)=C=CH-CH2-CH2-C(0)-CH3] in THF by the action of naphthalene-sodium, on the one hand and, by sonically activated sodium on the other. In both the cases, one-electron transfer yields the anion-radical salt of the allenic ketone with sodium. However, only in the case of sonicated sodium is this salt stabilized, eventually giving H3C-C(CH3)=C=CH-CH2-CH2-C(0H)-CH3 along with cyclic products (l-methyl-2-isopropylidene cyclopentanol and l-methyl-2-isopropylcyclopent-2-enol). If naphthalene-sodium is used, only the cyclic alcohols are obtained as mentioned earlier. [Pg.354]

The cyclization process can be promoted by using a single electron transfer mediator. Electron transfer from the mediator generates the carbonyl radical-ion away from the electrode surface so that cyclization can occur before there is opportunity for a second electron transfer. Thus reduction of 16, R = Me, in dimethyl-forraaraide at mercury in the presence of tetraethylammonium fluoroborate leads only to conversion of the ketone function to the secondaiy alcohol. However addition of a low concentration of N,N-dimethyl pyrrolidinium fluoroborate alters the course of reaction and the cyclized tertiary alcohol is now formed. This pyrrolidinium salt is reduced at -2.7 V vs. see at mercuiy to yield a complex DMP(Hg5) which is thought to act as a single electron transfer mediator [94]. Cyclization can... [Pg.345]


See other pages where Electron transfer reduction alcohols is mentioned: [Pg.248]    [Pg.293]    [Pg.682]    [Pg.197]    [Pg.210]    [Pg.53]    [Pg.592]    [Pg.141]    [Pg.150]    [Pg.156]    [Pg.915]    [Pg.366]    [Pg.76]    [Pg.11]    [Pg.157]    [Pg.496]    [Pg.584]    [Pg.214]    [Pg.74]    [Pg.518]    [Pg.164]    [Pg.457]    [Pg.201]    [Pg.207]    [Pg.209]    [Pg.90]    [Pg.72]    [Pg.723]   
See also in sourсe #XX -- [ Pg.815 ]

See also in sourсe #XX -- [ Pg.8 , Pg.815 ]

See also in sourсe #XX -- [ Pg.8 , Pg.815 ]




SEARCH



Alcoholic reduction

Alcohols electrons

Alcohols reduction

Electron reductions

Reduction transfer

Reductive electron transfer

© 2024 chempedia.info