Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron Thermalization in the Gas Phase

Shizgal et al. (1989) have listed a large number of processes that require an understanding of electron thermalization in the gas phase. These range from radiation physics and chemistry to radiation biology, and connect such diverse fields as electron transport, laser systems, nuclear fusion, and plasma chemistry. Certainly, this list is not exhaustive. [Pg.250]


The most intensive development of the nanoparticle area concerns the synthesis of metal particles for applications in physics or in micro/nano-electronics generally. Besides the use of physical techniques such as atom evaporation, synthetic techniques based on salt reduction or compound precipitation (oxides, sulfides, selenides, etc.) have been developed, and associated, in general, to a kinetic control of the reaction using high temperatures, slow addition of reactants, or use of micelles as nanoreactors [15-20]. Organometallic compounds have also previously been used as material precursors in high temperature decomposition processes, for example in chemical vapor deposition [21]. Metal carbonyls have been widely used as precursors of metals either in the gas phase (OMCVD for the deposition of films or nanoparticles) or in solution for the synthesis after thermal treatment [22], UV irradiation or sonolysis [23,24] of fine powders or metal nanoparticles. [Pg.234]

On the other hand, electron thermalization, although fast on the scale of thermal reactions, can still be discerned experimentally. In the gas phase, it exhibits itself through the evolution of electron energy via time-dependent reaction rates. In the liquid phase, the thermalization distance in the field of the positive ion is the all-important quantity that determines the probability of free-ion generation (see Chapter 9). In this chapter, we will deal exclusively with electron thermalization. [Pg.247]

In a nonattaching gas electron, thermalization occurs via vibrational, rotational, and elastic collisions. In attaching media, competitive scavenging occurs, sometimes accompanied by attachment-detachment equilibrium. In the gas phase, thermalization time is more significant than thermalization distance because of relatively large travel distances, thermalized electrons can be assumed to be homogeneously distributed. The experiments we review can be classified into four categories (1) microwave methods, (2) use of probes, (3) transient conductivity, and (4) recombination luminescence. Further microwave methods can be subdivided into four types (1) cross modulation, (2) resonance frequency shift, (3) absorption, and (4) cavity technique for collision frequency. [Pg.250]

In order to record excitation spectra, the radical ions must first be thermalized to the electronic ground state, which happens automatically if they are created in condensed phase (e.g. in noble-gas matrices, see below). In the gas-phase experiments where ionization is effected by collision with excited argon atoms (Penning ionization), the unexcited argon atoms serve as a heat bath which may even be cooled to 77 K if desired. After thermalization, excitation spectra may be obtained by laser-induced fluorescence. [Pg.231]

Transition State Theory [1,4] is the most frequently used theory to calculate rate constants for reactions in the gas phase. The two most basic assumptions of this theory are the separation of the electronic and nuclear motions (stemming from the Bom-Oppenheimer approximation [5]), and that the reactant internal states are in thermal equilibrium with each other (that is, the reactant molecules are distributed among their states in accordance with the Maxwell-Boltzmann distribution). In addition, the fundamental hypothesis [6] of the Transition State Theory is that the net rate of forward reaction at equilibrium is given by the flux of trajectories across a suitable phase space surface (rather a hypersurface) in the product direction. This surface divides reactants from products and it is called the dividing surface. Wigner [6] showed long time ago that for reactants in thermal equilibrium, the Transition State expression gives the exact... [Pg.125]

The purpose of the MS techniques is to detect charged molecular ions and fragments separated according to their molecular masses. Most flavonoid glycosides are polar, nonvolatile, and often thermally labile. Conventional MS ionization methods like electron impact (El) and chemical ionization (Cl) have not been suitable for MS analyses of these compounds because they require the flavonoid to be in the gas phase for ionization. To increase volatility, derivatization of the flavonoids may be performed. However, derivatization often leads to difficulties with respect to interpretation of the fragmentation patterns. Analysis of flavonoid glycosides without derivatization became possible with the introduction of desorption ionization techniques. Field desorption, which was the first technique employed for the direct analysis of polar flavonoid glycosides, has provided molecular mass data and little structural information. The technique has, however, been described as notorious for the transient... [Pg.68]

The reactions underlying CVD typically occur both in the gas phase and on the surface of the substrate. The energy required to drive the reactions is usually supplied thermally by heating the substrate or, in a few instances, by heating the gas. Alternatively, photons from an ultraviolet (UV) light source or from a laser, as well as energetic electrons in plasmas, are used to drive low-temperature deposition processes. [Pg.209]


See other pages where Electron Thermalization in the Gas Phase is mentioned: [Pg.247]    [Pg.250]    [Pg.251]    [Pg.253]    [Pg.255]    [Pg.257]    [Pg.259]    [Pg.261]    [Pg.247]    [Pg.250]    [Pg.251]    [Pg.253]    [Pg.255]    [Pg.257]    [Pg.259]    [Pg.261]    [Pg.137]    [Pg.126]    [Pg.61]    [Pg.25]    [Pg.27]    [Pg.664]    [Pg.263]    [Pg.264]    [Pg.281]    [Pg.303]    [Pg.28]    [Pg.955]    [Pg.153]    [Pg.328]    [Pg.819]    [Pg.328]    [Pg.22]    [Pg.206]    [Pg.173]    [Pg.1134]    [Pg.335]    [Pg.752]    [Pg.1134]    [Pg.227]    [Pg.54]    [Pg.861]    [Pg.68]    [Pg.249]    [Pg.54]    [Pg.2088]    [Pg.54]    [Pg.250]    [Pg.259]    [Pg.72]   


SEARCH



Electron gas phase

Electron phases

Electronic gases

Electrons thermalized

Gas phase in the

In gas phase

Phase thermal

The gas phase

© 2024 chempedia.info