Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron spin resonance experimental

In an electron spin resonance spectrometer, transitions between the two states are brought about by the application of the quantum of energy hv which is equal to g H. The resonance condition is defined when hv = g H and this is achieved experimentally by varying H keeping the frequency (v) constant. Esr spectroscopy is used extensively in chemistry in the identification and elucidation of structures of radicals. [Pg.152]

Quadrupole coupling constants for molecules are usually determined from the hyperfine structure of pure rotational spectra or from electric-beam and magnetic-beam resonance spectroscopies. Nuclear magnetic resonance, electron spin resonance and Mossbauer spectroscopies are also routes to the property. There is a large amount of experimental data for and halogen-substituted molecules. Less data is available for deuterium because the nuclear quadrupole is small. [Pg.278]

Although the speciation of some minor elements has been determined directly by experimental means (e.g., ion selective electrodes, polarography, electron spin resonance) most of our thinking about speciation is based on equilibrium calculations. Garrels and Thompson... [Pg.259]

The use of selective deuteration is a powerful tool in electron spin resonance (ESR) experiments, in order to establish unequivocal assignments of experimental spectra of radicals. The reason for this is, as is well known, the difference in magnetic properties between the deuteron and the proton, which can be exploited to distinguish chemically inequivalent hydrogens in the molecule. [Pg.340]

The reduction of cyanocobalamin gives three possible oxidation states for the cobalt atom (Fig. 2). Electron spin resonance studies with Bi2-r reveals that this molecule is the only paramagnetic species giving a spectrum expected for a tetragonal low spin Co(II) complex. Controlled potential reduction of cyanocobalamin to Bi2-r proves that this reduction involves one electron, and further reduction of Bi2-r to B12-S requires a second single electron (16—19). At one time B12-S was considered to be a hydride of Co(III), but controlled potential coulometry experiments provided evidence against a stable hydride species (16). However, these experimental data do not exclude the possibility of a stable Co(III) hydride as the functional species in enzyme catalyzed oxidation reduction reactions. [Pg.53]

C.P. Poole, Jr., Electron Spin Resonance A Comprehensive Treatise on Experimental Techniques, 2nd ed., Wiley, New York, 1983. [Pg.522]

Double-resonance spectroscopy involves the use of two different sources of radiation. In the context of EPR, these usually are a microwave and a radiowave or (less common) a microwave and another microwave. The two combinations were originally called ENDOR (electron nuclear double resonance) and ELDOR (electron electron double resonance), but the development of many variations on this theme has led to a wide spectrum of derived techniques and associated acronyms, such as ESEEM (electron spin echo envelope modulation), which is a pulsed variant of ENDOR, or DEER (double electron electron spin resonance), which is a pulsed variant of ELDOR. The basic principle involves the saturation (partially or wholly) of an EPR absorption and the subsequent transfer of spin energy to a different absorption by means of the second radiation, leading to the detection of the difference signal. The requirement of saturability implies operation at close to liquid helium, or even lower, temperatures, which, combined with long experimentation times, produces a... [Pg.226]

Poole, C.P. Jr. 1983. Electron Spin Resonance A Complehensive Treatise on Experimental Techniques, 2nd edition. New York John Wiley Sons. Reprinted Mineola, New York Dover Publications, 1996. [Pg.237]

The assumption of membrane softness is supported by a theoretical argument of Nelson et al., who showed that a flexible membrane cannot have crystalline order in thermal equilibrium at nonzero temperature, because thermal fluctuations induce dislocations, which destroy this order on long length scales.188 189 The assumption is also supported by two types of experimental evidence for diacetylenic lipid tubules. First, Treanor and Pace found a distinct fluid character in NMR and electron spin resonance experiments on lipid tubules.190 Second, Brandow et al. found that tubule membranes can flow to seal up cuts from an atomic force microscope tip, suggesting that the membrane has no shear modulus on experimental time scales.191 However, conflicting evidence comes from X-ray and electron diffraction experiments on diacetylenic lipid tubules. These experiments found sharp diffraction peaks, which indicate crystalline order in tubule membranes, at least over the length scales probed by the diffraction techniques.123,192 193... [Pg.357]

Electron spin resonance (ESR) methods have been used to observe the formation of the radical cations and dications of benzoll,2- 4,5- ]bis[l,2,3]trithiole 13 and benzo[l,2-4 4,5- ]bis[l,2,3]dithiazole 17, and the experimental results confirm the ab initio calculations performed <2003EJ04902, 1997JA12136>. ESR has also been used to confirm the formation of superoxides upon photolysis of aryl benzobisthiazoles and aryl benzobisoxazoles in the presence of molecular oxygen <2003MM4699>. [Pg.1141]


See other pages where Electron spin resonance experimental is mentioned: [Pg.481]    [Pg.67]    [Pg.601]    [Pg.89]    [Pg.312]    [Pg.265]    [Pg.10]    [Pg.5]    [Pg.28]    [Pg.78]    [Pg.50]    [Pg.52]    [Pg.266]    [Pg.279]    [Pg.248]    [Pg.519]    [Pg.116]    [Pg.254]    [Pg.9]    [Pg.32]    [Pg.309]    [Pg.505]    [Pg.54]    [Pg.140]    [Pg.138]    [Pg.25]    [Pg.205]    [Pg.360]    [Pg.67]    [Pg.679]    [Pg.184]    [Pg.197]    [Pg.189]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Electron spin resonance studies experimental spectrum

Experimental methods electron spin resonance

Structure determination, experimental electron spin resonance

© 2024 chempedia.info