Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron energy loss spectroscopy surfaces

Sexton BA (1979) Observation of formate species on a copper(lOO) surface by high resolution electron energy loss spectroscopy. Surface Sci 88 319-330 Sexton BA, Madix RJ (1981) A vibrational study of formic acid interaction with clean and oxygen-covered silver(llO) surfaces. Surface Sci 105 177-195 Sheldon RA, Kochi JK (1968) Photochemical and thermal reduction of cerium(IV) carboxylates. Formation and oxidation of alkyl radicals. J Am Chem Soc 90 6687-6698... [Pg.269]

H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic, New York, 1982. [Pg.743]

Electrons interact with solid surfaces by elastic and inelastic scattering, and these interactions are employed in electron spectroscopy. For example, electrons that elastically scatter will diffract from a single-crystal lattice. The diffraction pattern can be used as a means of stnictural detenuination, as in FEED. Electrons scatter inelastically by inducing electronic and vibrational excitations in the surface region. These losses fonu the basis of electron energy loss spectroscopy (EELS). An incident electron can also knock out an iimer-shell, or core, electron from an atom in the solid that will, in turn, initiate an Auger process. Electrons can also be used to induce stimulated desorption, as described in section Al.7.5.6. [Pg.305]

Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks. Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks.
Analysis of Surface Molecular Composition. Information about the molecular composition of the surface or interface may also be of interest. A variety of methods for elucidating the nature of the molecules that exist on a surface or within an interface exist. Techniques based on vibrational spectroscopy of molecules are the most common and include the electron-based method of high resolution electron energy loss spectroscopy (hreels), and the optical methods of ftir and Raman spectroscopy. These tools are tremendously powerful methods of analysis because not only does a molecule possess vibrational modes which are signatures of that molecule, but the energies of molecular vibrations are extremely sensitive to the chemical environment in which a molecule is found. Thus, these methods direcdy provide information about the chemistry of the surface or interface through the vibrations of molecules contained on the surface or within the interface. [Pg.285]

In recent years there is a growing interest in the study of vibrational properties of both clean and adsorbate covered surfaces of metals. For several years two complementary experimental methods have been used to measure the dispersion relations of surface phonons on different crystal faces. These are the scattering of thermal helium beams" and the high-resolution electron-energy-loss-spectroscopy. ... [Pg.151]

AC Impedance spectroscopy, 237 Auger electron spectroscopy, AES, 254 High resolution electron energy loss spectroscopy, HREELS, 43, 69 Infrared spectroscopy, IRS, 39, 69 Surface enhanced Raman spectroscopy, SERS, 256... [Pg.573]

HRELS = high-resolution, electron-energy-loss spectroscopy. " Surf. Sci. (in press). Ref. (123). Ref (101). Softened pCHj surface-mode. Weak band observed around 1500 cm could be a surface-dipole-forbidden, Pfc mode. Hidden under intense SCHj mode of free C2H4 in the matrix. " One of these bands belongs to Ni2(C2H4)2. [Pg.124]

The vibrations of molecular bonds provide insight into bonding and stmcture. This information can be obtained by infrared spectroscopy (IRS), laser Raman spectroscopy, or electron energy loss spectroscopy (EELS). IRS and EELS have provided a wealth of data about the stmcture of catalysts and the bonding of adsorbates. IRS has also been used under reaction conditions to follow the dynamics of adsorbed reactants, intermediates, and products. Raman spectroscopy has provided exciting information about the precursors involved in the synthesis of catalysts and the stmcture of adsorbates present on catalyst and electrode surfaces. [Pg.184]

Ibach H. Mills, D.L. "Electron Energy Loss Spectroscopy and Surface Vibrations", Academic Press New York, 1982. [Pg.403]

Ibach, H. Hills, D. L., "Electron Energy Loss Spectroscopy and Surface Vibration" Academic Press, New York 1982. [Pg.420]

A noteworthy feature of the photoacoustic spectra shown in Figure 2 Is the presence of water librations. These are frustrated rotations and have been observed for ice (24) by infrared spectroscopy, as well as for water adsorbed on Ft and Ag surfaces by electron energy loss spectroscopy (25-27). The three libration modes have been associated with the bands at 600, 538 and 468 cm" > this set of peaks occurs for water adsorbed on both the hydroxylated and methoxylated silica. [Pg.460]

Sexton BA. 1981. Identification of adsorbed species at metal-surfaces by electron-energy loss spectroscopy (EELS). Appl Phys A 26 1-18. [Pg.312]

Ammonia oxidation was a prototype system, but subsequently a number of other oxidation reactions were investigated by surface spectroscopies and high-resolution electron energy loss spectroscopy XPS and HREELS. In the case of ammonia oxidation at a Cu(110) surface, the reaction was studied under experimental conditions which simulated a catalytic reaction, albeit at low... [Pg.23]

Vibrational spectroscopy provides the most definitive means of identifying the surface species arising from molecular adsorption and the species generated by surface reaction, and the two techniques that are routinely used for vibrational studies of molecules on surfaces are Infrared (IR) Spectroscopy and Electron Energy Loss Spectroscopy (HREELS) (q.v.). [Pg.41]


See other pages where Electron energy loss spectroscopy surfaces is mentioned: [Pg.203]    [Pg.584]    [Pg.307]    [Pg.938]    [Pg.1264]    [Pg.1325]    [Pg.1328]    [Pg.1625]    [Pg.1851]    [Pg.269]    [Pg.25]    [Pg.34]    [Pg.118]    [Pg.136]    [Pg.281]    [Pg.442]    [Pg.50]    [Pg.348]    [Pg.388]    [Pg.358]    [Pg.366]    [Pg.247]    [Pg.249]    [Pg.166]    [Pg.199]    [Pg.392]    [Pg.508]    [Pg.512]    [Pg.33]    [Pg.59]    [Pg.154]    [Pg.6]    [Pg.151]   
See also in sourсe #XX -- [ Pg.361 , Pg.363 ]




SEARCH



Electron Energy-Loss

Electron Energy-Loss Spectroscopy

Electron energy loss spectroscopy surface-bound

Electron loss

Electron loss spectroscopy

Electron loss spectroscopy, surface

Electronic spectroscopy, surface

Loss Spectroscopy

Spectroscopy energy loss

Surface electronic

Surface electrons

Surface spectroscopy

© 2024 chempedia.info