Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inner electron configuration

The electron configuration is the orbital description of the locations of the electrons in an unexcited atom. Using principles of physics, chemists can predict how atoms will react based upon the electron configuration. They can predict properties such as stability, boiling point, and conductivity. Typically, only the outermost electron shells matter in chemistry, so we truncate the inner electron shell notation by replacing the long-hand orbital description with the symbol for a noble gas in brackets. This method of notation vastly simplifies the description for large molecules. [Pg.220]

Tellurium [13494-80-9] Te, at no. 52, at wt 127.61, is a member of the sixth main group. Group 16 (VIA) of the Periodic Table, located between selenium and polonium. Tellurium is in the fifth row of the Table, between antimony and iodine, and has an outer electron configuration of The four inner... [Pg.383]

It is possible to explain these trends in terms of the electron configurations of the corresponding atoms. Consider first the increase in radius observed as we move down the table, let us say among the alkali metals (Group 1). All these elements have a single s electron outside a filled level or filled p sublevel. Electrons in these inner levels are much closer to the nucleus than the outer s electron and hence effectively shield it from the positive charge of the nucleus. To a first approximation, each inner electron cancels the charge of one pro-... [Pg.152]

Soon after Bohr developed his initial configuration Arnold Sommerfeld in Munich realized the need to characterize the stationary states of the electron in the hydrogen atom by. means of a second quantum number—the so-called angular-momentum quantum number, Bohr immediately applied this discovery to many-electron atoms and in 1922 produced a set of more detailed electronic configurations. In turn, Sommerfeld went on to discover the third or inner, quantum number, thus enabling the British physicist Edmund Stoner to come up with an even more refined set of electronic configurations in 1924. [Pg.38]

Figure 5. Niels Bohr came up with the idea that the energy of orbiting electrons would be in discrete amounts, or quanta. This enabled him to successfully describe the hydrogen atom, with its single electron, In developing the remainder of his first table of electron configurations, however, Bohr clearly relied on chemical properties, rather than quantum theory, to assign electrons to shells. In this segment of his configuration table, one can see that Bohr adjusted the number of electrons in nitrogen s inner shell in order to make the outer shell, or the reactive shell, reflect the element s known trivalency. Figure 5. Niels Bohr came up with the idea that the energy of orbiting electrons would be in discrete amounts, or quanta. This enabled him to successfully describe the hydrogen atom, with its single electron, In developing the remainder of his first table of electron configurations, however, Bohr clearly relied on chemical properties, rather than quantum theory, to assign electrons to shells. In this segment of his configuration table, one can see that Bohr adjusted the number of electrons in nitrogen s inner shell in order to make the outer shell, or the reactive shell, reflect the element s known trivalency.
Finally, we consider the alternative mechanism for electron transfer reactions -the inner-sphere process in which a bridge is formed between the two metal centers. The J-electron configurations of the metal ions involved have a number of profound consequences for this reaction, both for the mechanism itself and for our investigation of the reaction. The key step involves the formation of a complex in which a ligand bridges the two metal centers involved in the redox process. For this to be a low energy process, at least one of the metal centers must be labile. [Pg.194]

Although the role of rare earth ions on the surface of TiC>2 or close to them is important from the point of electron exchange, still more important is the number of f-electrons present in the valence shell of a particular rare earth. As in case of transition metal doped semiconductor catalysts, which produce n-type WO3 semiconductor [133] or p-type NiO semiconductor [134] catalysts and affect the overall kinetics of the reaction, the rare earth ions with just less than half filled (f5 6) shell produce p-type semiconductor catalysts and with slightly more than half filled electronic configuration (f8 10) would act as n-type of semiconductor catalyst. Since the half filled (f7) state is most stable, ions with f5 6 electrons would accept electrons from the surface of TiC>2 and get reduced and rare earth ions with f8-9 electrons would tend to lose electrons to go to stabler electronic configuration of f7. The tendency of rare earths with f1 3 electrons would be to lose electrons and thus behave as n-type of semiconductor catalyst to attain completely vacant f°- shell state [135]. The valence electrons of rare earths are rather embedded deep into their inner shells (n-2), hence not available easily for chemical reactions, but the cavitational energy of ultrasound activates them to participate in the chemical reactions, therefore some of the unknown oxidation states (as Dy+4) may also be seen [136,137]. [Pg.319]

Table Al.l Electronic configuration of the elements. Elements in square brackets (e.g., [He]) imply that the electronic configurations of the inner orbitals are identical to those of the element in brackets. Thus silver (Ag, atomic number 47) has a configuration of [Kr]4(7105 1, which if written out in full would be s22s22p62s22p62d1QAs1Ap6Adw5>s1, giving 47 electrons in all. For the heavier elements (atomic number above 55), the alternative notation K, L, M is used to denote the inner shells corresponding to orbitals 1, 2 and 3 respectively. This notation is common in X-ray spectroscopy (see p. 33). (Adapted from Lide, 1990.)... Table Al.l Electronic configuration of the elements. Elements in square brackets (e.g., [He]) imply that the electronic configurations of the inner orbitals are identical to those of the element in brackets. Thus silver (Ag, atomic number 47) has a configuration of [Kr]4(7105 1, which if written out in full would be s22s22p62s22p62d1QAs1Ap6Adw5>s1, giving 47 electrons in all. For the heavier elements (atomic number above 55), the alternative notation K, L, M is used to denote the inner shells corresponding to orbitals 1, 2 and 3 respectively. This notation is common in X-ray spectroscopy (see p. 33). (Adapted from Lide, 1990.)...
The /block includes all the inner transition elements. Atoms of /block elements have filled s orbitals in the outer energy levels, as well as filled or partially filled 4/and 5/orbitals. In general, the notation for the orbital filling sequence is ns, followed by (n - 2)/, followed by (n - l]d, followed by (for period 6 elements) np. However, there are many exceptions that make it difficult to predict electron configurations. Because there are seven/orbitals, with a maximum of fourteen electrons, the /block spans fourteen groups. [Pg.149]

Symbol Am Atomic Number 95 Atomic Weight 243.0614 an inner-transition, actinide series, radioactive man-made element electron configuration ... [Pg.15]

Symbol Ce atomic number 58 atomic weight 140.115 a rare-earth metal a lanthanide series inner-transition /-block element metaUic radius (alpha form) 1.8247A(CN=12) atomic volume 20.696 cm /mol electronic configuration [Xe]4fi5di6s2 common valence states -i-3 and +4 four stable isotopes Ce-140 and Ce-142 are the two major ones, their percent abundances 88.48% and 11.07%, respectively. Ce—138 (0.25%) and Ce—136(0.193%) are minor isotopes several artificial radioactive isotopes including Ce-144, a major fission product (ti 284.5 days), are known. [Pg.199]

Symbol Dy atomic number 66 atomic weight 162.50 a lanthanide series, inner transition, rare earth metal electron configuration [Xe]4 5di6s2 atomic volume 19.032 cm /g. atom atomic radius 1.773A ionic radius 0.908A most common valence state +3. [Pg.289]

Symbol Eu atomic number 63 atomic weight 151.97 a lanthanide group inner transition metal electron configuration [Xe]4/ 5di6s2 (partially filled orbitals) valence states +3 and +2. [Pg.294]

Symbol La atomic number 57 atomic weight 138.91 a rare-earth transition metal, precursor to a series of 14 inner-transition elements known as the lanthanide series electron configuration [XejSdiGs oxidation state -i-3 atomic radius 1.879A ionic radius (LaS+) 1.061A electronegativity 1.17 two natural isotopes are La-139 (99.911%) and La-138 (0.089%). [Pg.443]


See other pages where Inner electron configuration is mentioned: [Pg.8]    [Pg.14]    [Pg.444]    [Pg.326]    [Pg.365]    [Pg.1242]    [Pg.1266]    [Pg.22]    [Pg.27]    [Pg.37]    [Pg.43]    [Pg.158]    [Pg.161]    [Pg.163]    [Pg.777]    [Pg.194]    [Pg.100]    [Pg.595]    [Pg.61]    [Pg.307]    [Pg.277]    [Pg.65]    [Pg.54]    [Pg.120]    [Pg.311]    [Pg.52]    [Pg.8]    [Pg.14]    [Pg.444]    [Pg.229]    [Pg.127]    [Pg.19]    [Pg.87]    [Pg.72]    [Pg.229]    [Pg.293]   
See also in sourсe #XX -- [ Pg.343 , Pg.347 ]




SEARCH



© 2024 chempedia.info