Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electromotive force electrolytes

The changes, however, are both numerous and significant. First of all, there is a change in the organization of the subject matter. For example, material formerly contained in the section entitled Analytical Chemistry is now grouped by operational categories spectroscopy electrolytes, electromotive force, and chemical equilibrium and practical laboratory information. Polymers, rubbers, fats, oils, and waxes constitute a large independent section. [Pg.1286]

Section 8 now combines all the material on electrolytes, electromotive force, and chemical equilibrium, some of which had formerly been included in the old Analytical Chemistry section of earlier editions. Material on the half-wave potentials of inorganic and organic materials has been thoroughly revised. The tabulation of the potentials of the elements and their compounds reflects recent lUPAC (1985) recommendations. [Pg.1287]

The equation shows that the electromotive force is proportional to the absolute temperature, which was verified by experiment. It is also independent of the nature of the electrolyte. [Pg.465]

Similar considerations apply of course to the opposing electromotive forces of polarisation during electrolysis, when the process is executed reversibly, since an electrolytic cell is, as we early remarked, to be considered as a voltaic cell working in the reverse direction. In this way Helmholtz (ibid.) was able to explain the fluctuations of potential in the electrolysis of water as due to the variations of concentration due to diffusion of the dissolved gases. It must not be forgotten, however, that peculiar phenomena—so-called supertension effects—depending on the nature of the electrodes, make their appearance here, and com-... [Pg.481]

Since the electrolyte membrane only allows the conduction of ions, the electrons are forced through an exterior circuit, creating an electromotive force. The voltage generated by such a cell is given by the Nernst equation. For the hydrogen-oxygen reaction we can write ... [Pg.342]

In this cell, the following independent phases must be considered platinum, silver, gaseous hydrogen, solid silver chloride electrolyte, and an aqueous solution of hydrogen chloride. In order to be able to determine the EMF of the cell, the leads must be made of the same material and thus, to simplify matters, a platinum lead must be connected to the silver electrode. It will be seen in the conclusion to this section that the electromotive force of a cell does not depend on the material from which the leads are made, so that the whole derivation could be carried out with different, e.g. copper, leads. In addition to Cl- and H30+ ions (further written as H+), the solution also contains Ag+ ions in a small concentration corresponding to a saturated solution of silver chloride in hydrochloric acid. Thus, the following scheme of the phases can be written (the parentheses enclose the species present in the given phase) ... [Pg.172]

The concentration overpotential i/c is the component of the overpotential due to concentration gradients in the electrolyte solution near the electrode, not including the electric double layer. The concentration overpotential is usually identified with the Nernst potential of the working electrode with respect to the reference electrode that is, the thermodynamic electromotive force (emf) of a concentration cell formed between the working electrode (immersed in electrolyte depleted of reacting species) and the reference electrode (of the same kind but immersed in bulk electrolyte solution) ... [Pg.223]

Wagner pioneered the use of solid electrolytes for thermochemical studies of solids [62], Electrochemical methods for the determination of the Gibbs energy of solids utilize the measurement of the electromotive force set up across an electrolyte in a chemical potential gradient. The electrochemical potential of an electrochemical cell is given by ... [Pg.319]

Fig. 6-1. Electrochemical cell, electric charge flow in a closed cell circuit, and electron levels of two electrodes in an open cell circuit M = electrode S = electrolyte solution a, = real potential of electrons in electrode, e.Ji -electromotive force. Fig. 6-1. Electrochemical cell, electric charge flow in a closed cell circuit, and electron levels of two electrodes in an open cell circuit M = electrode S = electrolyte solution a, = real potential of electrons in electrode, e.Ji -electromotive force.
As shown in Fig. 6-3, it is also in the same TUPAC convention that a positive electric charge flows from the left hand electrode through the electrolyte to the right hand electrode, as the cell reaction proceeds in the direction as written in Eqn. 6-3. This defines the sign of the electromotive force of electrochemical cells. [Pg.204]

From the energy diagram shown in Fig. 10-33, the operating cell voltage, V,, is obtained, as expressed in Eqn. 10-60, by subtracting from the electromotive force AEph the potential barrier of the space charge layer, the cathodic overvoltage t h, and the iR drop in the electrolyte ... [Pg.368]

Helmholtz equation puys chem The relationship stating that the emf (electromotive force) of a reversible electrolytic cell equals the work equivalent of the chemical reaction when charge passes through the cell plus the product of the temperature and the derivative of the emf with respect to temperature. helm,holts i.kwa-zhon hematin org chem C34ff3305N4Fe The hydroxide of ferriheme derived from oxidized heme. he mad an ... [Pg.176]

A unitless correction factor that relates the relative activity of a substance to the quantity of the substance in a mixture. Activity coefficients are frequently determined by emf (electromotive force) or freezing-point depression measurements. At infinite dilution, the activity coefficient equals 1.00. Activity coefficients for electrolytes can vary significantly depending upon the concentration of the electrolyte. Activity coefficients can exceed values of 1.00. For example, a 4.0 molal HCl solution has a coefficient of 1.76 and a 4.0 molal Li Cl has a value of... [Pg.28]

We may likewise obtain an estimate of the thickness of the adsorbed film by determining the maximum current density at which ions may be deposited at an electrode which is kept in rapid rotation. The ions being deposited must be regarded as migrating across a film of thickness S from a concentration equal to that in the bulk of the electrolyte to a region of zero concentration under the applied electromotive force. Thus Ackerberg Anorg. [Pg.193]

Understanding voltaic cells, anodes, and cathodes Figuring standard reduction potentials and electromotive force Zapping current into electrolytic cells... [Pg.259]


See other pages where Electromotive force electrolytes is mentioned: [Pg.108]    [Pg.828]    [Pg.173]    [Pg.175]    [Pg.395]    [Pg.1031]    [Pg.55]    [Pg.635]    [Pg.827]    [Pg.1097]    [Pg.199]    [Pg.130]    [Pg.11]    [Pg.87]    [Pg.113]    [Pg.129]    [Pg.130]    [Pg.131]    [Pg.79]    [Pg.340]    [Pg.231]    [Pg.117]    [Pg.87]   
See also in sourсe #XX -- [ Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.133 ]




SEARCH



Electrolytes, Electromotive Force, and Chemical Equilibrium

Electromotive force

© 2024 chempedia.info