Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemiluminescence system investigations

Radical 80 has been prepared as its perchlorate salt by anodic oxidation in ethyl acetate in the presence of hthium perchlorate. The reactivity toward nucleophiles of material so prepared was investigated nitrite and nitrate ions give 2-nitrodibenzo[l,4]dioxin although the mechanisms of the reactions are not clear. Pyridine gives 7V-(2-dibenzo[l,4]dioxinyl)pyridinium ion (84). Other nucleophiles acted as electron donors and largely reduced 80 back to the parent heterocycle they included amines, cyanide ion and water. In an earlier study, the reaction of 80 with water had been examined and the ultimate formation of catechol via dibenzo[l,4]dioxin-2,3-dione was inferred. The cation-radical (80) has been found to accelerate the anisylation of thianthrene cation-radical (Section lII,C,4,b) it has been found to participate in an electrochemiluminescence system with benzo-phenone involving phosphorescence of the latter in a fluid system, and it has been used in a study of relative diffusion coefficients of aromatic cations which shows that it is justified to equate voltammetric potentials for these species with formal thermodynamic redox potentials. The dibenzo[l,4]dioxin semiquinone 85 has been found to result from the alkaline autoxidation of catechol the same species may well be in-... [Pg.66]

By media variables we mean the solvent, electrolyte, and electrodes employed in electrochemical generation of excited states. The roles which these play in the emissive process have not been sufficiently investigated. The combination of A vV-dimethylformamide, or acetonitrile, tetra-n-butylammonium perchlorate and platinum have been most commonly reported because they have been found empirically to function well. Despite various inadequacies of these systems, however, relatively little has been done to find and develop improved conditions under which emission could be seen and studied. Electrochemiluminescence emission has also been observed in dimethyl sulfite, propylene carbonate, 1,2-dimethoxyethane, trimethylacetonitrile, and benzonitrile.17 Recently the last of these has proven very useful for stabilizing the rubrene cation radical.65,66 Other electrolytes that have been tried are tetraethylam-monium bromide and perchlorate1 and tetra-n-butylammonium bromide and iodide.5 Emission has also been observed with gold,4 mercury,5 and transparent tin oxide electrodes,9 but few studies have yet been made1 as to the effects of electrode construction and orientation on the emission character. [Pg.438]

The influence of impurities on electrochemiluminescence emission behavior has been difficult to ascertain. The best quantum yield of emission under annihilative conditions thus far achieved is about 1 %.63 The preannihilative emission is one to two orders of magnitude less intense.11 As the concentration of fluorescer in emitting systems is ca. 10 3M, as low a concentration of impurity as 10 7M may be responsible for the entire emission. Investigations thus far conducted have tacitly accepted such impurity levels in these solutions and have concentrated on inferring their action by observing the effects of additives... [Pg.438]

ECL investigations of dinuclear or polynuclear Ru(II) complexes have been recently performed with hope for developing more efficient electrochemiluminescent materials. Centrally or peripherally functionalized dendrimers with active RuL32 + chelate units can produce higher (up to four to five times) ECL intensities as compared to their monomeric RuL32 + precursors alone. It was also found that the ECL intensities of metallodendrimers become larger as the multiplicity of the involved Ru(II) units increases. Similar observations have been reported for binuclear Ru(II) complexes with weak interaction between both metallic centers.84-88 These results indicate that further studies in such direction may result in design of still more efficient ECL systems based on Ru(II) luminophores. [Pg.486]

Chi Y, Dong Y, Chen G (2007) Investigation on the electrochemiluminescent behaviors of oxypurinol in alkaline Ru(bpy) solution using a flow injection analytical system. Electrochem Comm 9(4) 577-583. doi 10.1016/j.elecom.2006.09.030... [Pg.105]


See other pages where Electrochemiluminescence system investigations is mentioned: [Pg.66]    [Pg.101]    [Pg.120]    [Pg.41]    [Pg.470]    [Pg.1477]   
See also in sourсe #XX -- [ Pg.482 , Pg.510 ]




SEARCH



Electrochemiluminescence

Electrochemiluminescence system

Systems investigated

© 2024 chempedia.info