Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical coupling, alkyl halides

The same electrochemical process was also used for the coupling between aldehydes or ketones and activated alkyl halides such as a-chloroesters, -nitriles, and -ketones as well as aya-dichloroesters.334 Electroanalytical studies have shown initial electroreduction of Fe(n) to Fe(i) and subsequent formation of an iron organometallic intermediate (e.g., a 7t-allyliron complex in Equation (27)) before reaction with the corresponding carbonyl compounds.335... [Pg.440]

Cross coupling between an aryl halide and an activated alkyl halide, catalysed by the nickel system, is achieved by controlling the rate of addition of the alkyl halide to the reaction mixture. When the aryl halide is present in excess, it reacts preferentially with the Ni(o) intermediate whereas the Ni(l) intermediate reacts more rapidly with an activated alkyl halide. Thus continuous slow addition of the alkyl halide to the electrochemical cell already charged with the aryl halide ensures that the alkyl-aryl coupled compound becomes the major product. Activated alkyl halides include benzyl chloride, a-chloroketones, a-chloroesters and amides, a-chloro-nitriles and vinyl chlorides [202, 203, 204], Asymmetric induction during the coupling step occurs with over 90 % distereomeric excess from reactions with amides such as 62, derived from enantiomerically pure (-)-ephedrine, even when 62 is a mixture of diastereoisomcrs prepared from a racemic a-chloroacid. Metiha-nolysis of the amide product affords the chiral ester 63 and chiral ephedrine is recoverable [205]. [Pg.140]

With an E° value of —0.75 V, entry no. 19 of Table 17, reaction between alkyl halides and alkyllithium compounds, represents a strongly exergonic electron-transfer reaction which is expected to proceed at a diffusion-controlled tate. Experimental rate constants are not available, but such reactions are qualitatively known to be very fast. As we proceed to entry no. 21, two model cases of the nucleophilic displacement mechanism, it can first be noted that the nosylate/[nosylate]- couple is electrochemically reversible the radical anion can be generated cathodically and is easily detected by esr spectroscopy (Maki and Geske, 1961). Hence its E° = —0.61 V is a reasonably accurate value. E° (PhS /PhS-) is known with considerably less accuracy since it refers to an electrochemically irreversible process (Dessy et al., 1966). The calculated rate constant is therefore subject to considerable uncertainty and it cannot at present be decided whether the Marcus theory is compatible with this type of electron-transfer step. In the absence of quantitative experimental data, the same applies to entry no. 22 of Table 17. For the PhS-/BuBr reaction we again suffer from the inaccuracy of E° (PhS /PhS-) what can be concluded is that for an electron-transfer step to be feasible the higher E° value (—0.74 V) should be the preferred one. The reality of an electron-transfer mechanism has certainly been strongly disputed, however (Kornblum, 1975). [Pg.171]

Arylations. NiBr is a useful catalyst for the electrochemical arylation of activated alkenes. Cross coupling of aryl halides with activated alkyl halides (e.g., a-halo ketones) occurs under similar conditions. [Pg.226]

A v ety of reactions are catalyzed by electrochemically generated Ni(0) (62). Electrochemical reduction of Ni(bipy)3Br2 affords a reagent that couples acid chlorides and alkyl or aryl halides to form unsymmetrical ketones (63). Symmetrical ketones are formed from alkyl halides and carbon dioxide (64). Reductive electrochemical carboxylation of terminal alkynes, enynes and diynes can be accomplished with 10% Ni(bipy)3(Bp4)2 in DMF (65-68). Terminal allies lead selectively to a-substituted acrylic acids. Electrocatalytic hydrogenation on hydrogen-active electrodes has been reviewed (69). Radical cyclizations of vinyl, alkyl and aryl radicals can be carried out by indirect electrochemical reduction with a Ni(II) complex as a mediator (70). [Pg.88]

The ratio ARH/ARj (monoalkylation/dialkylation) should depend principally on the electrophilic capability of RX. Thus it has been shown that in the case of t-butyl halides (due to the chemical and electrochemical stability of t-butyl free radical) the yield of mono alkylation is often good. Naturally, aryl sulphones may also be employed in the role of RX-type compounds. Indeed, the t-butylation of pyrene can be performed when reduced cathodically in the presence of CgHjSOjBu-t. Other alkylation reactions are also possible with sulphones possessing an ArS02 moiety bound to a tertiary carbon. In contrast, coupling reactions via redox catalysis do not occur in a good yield with primary and secondary sulphones. This is probably due to the disappearance of the mediator anion radical due to proton transfer from the acidic sulphone. [Pg.1019]

The reduction of organic halides is of practical importance for the treatment of effluents containing toxic organic halides and also for valuable synthetic applications. Direct electroreduction of alkyl and aryl halides is a kinetically slow process that requires high overpotentials. Their electrochemical activation is best achieved by use of electrochemically generated low-valent transition metal catalysts. Electrocatalytic coupling reactions of organic halides were reviewed in 1997.202... [Pg.485]

Experimental tests of the theoretical predictions have involved the electrochemical reduction of alkyl and benzyl halides as well as their reduction by homogeneous electron donors.22,29-31 In the first case, AG° = E - rx r.+x=f where E is the electrode potential and rx r.+x=f is the standard potential of the RX/R + XT couple. In the homogeneous case, AG° = E q — rx r-+xt> where E Q is the standard potential of the outer-sphere electron donor or acceptor couple P/Q, and + stands for a reduction and — for an oxidation. [Pg.124]

Pletcher and associates [155, 159, 160] have studied the electrochemical reduction of alkyl bromides in the presence of a wide variety of macrocyclic Ni(II) complexes. Depending on the substrate, the mediator, and the reaction conditions, mixtures of the dimer and the disproportionation products of the alkyl radical intermediate were formed (cf. Section 18.4.1). The same group [161] reported that traces of metal ions (e.g., Cu2+) in the catholyte improved the current density and selectivity for several cathodic processes, and thus the conversion of trichloroacetic acid to chloroacetic acid. Electrochemical reductive coupling of organic halides was accompanied several times by hydrodehalogena-tion, especially when Ni complexes were used as mediators. In many of the reactions examined, dehalogenation of the substrate predominated over coupling [162-165]. [Pg.532]


See other pages where Electrochemical coupling, alkyl halides is mentioned: [Pg.537]    [Pg.454]    [Pg.247]    [Pg.322]    [Pg.673]    [Pg.676]    [Pg.56]    [Pg.62]    [Pg.64]    [Pg.169]    [Pg.450]    [Pg.131]    [Pg.344]    [Pg.350]    [Pg.751]    [Pg.1023]    [Pg.1049]    [Pg.1052]    [Pg.56]    [Pg.62]    [Pg.64]    [Pg.206]    [Pg.60]    [Pg.345]    [Pg.255]    [Pg.2]    [Pg.76]    [Pg.303]    [Pg.1019]    [Pg.563]    [Pg.489]    [Pg.540]    [Pg.4]    [Pg.484]    [Pg.983]    [Pg.352]    [Pg.1052]    [Pg.4]    [Pg.651]    [Pg.983]   
See also in sourсe #XX -- [ Pg.598 ]




SEARCH



Alkyl coupling

Couplings alkylative

Electrochemical couple

Electrochemical coupling, alkyl

Electrochemical couplings

© 2024 chempedia.info