Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cell phases

In order to describe any electrochemical cell a convention is required for writing down the cells, such as the concentration cell described above. This convention should establish clearly where the boundaries between the different phases exist and, also, what the overall cell reaction is. It is now standard to use vertical lines to delineate phase boundaries, such as those between a solid and a liquid or between two innniscible liquids. The junction between two miscible liquids, which might be maintained by the use of a porous glass frit, is represented by a single vertical dashed line, j, and two dashed lines, jj, are used to indicate two liquid phases... [Pg.602]

Migration is the movement of ions due to a potential gradient. In an electrochemical cell the external electric field at the electrode/solution interface due to the drop in electrical potential between the two phases exerts an electrostatic force on the charged species present in the interfacial region, thus inducing movement of ions to or from the electrode. The magnitude is proportional to the concentration of the ion, the electric field and the ionic mobility. [Pg.1925]

Shorthand Notation for Electrochemical Cells Although Figure 11.5 provides a useful picture of an electrochemical cell, it does not provide a convenient representation. A more useful representation is a shorthand, or schematic, notation that uses symbols to indicate the different phases present in the electrochemical cell, as well as the composition of each phase. A vertical slash ( ) indicates a phase boundary where a potential develops, and a comma (,) separates species in the same phase, or two phases where no potential develops. Shorthand cell notations begin with the anode and continue to the cathode. The electrochemical cell in Figure 11.5, for example, is described in shorthand notation as... [Pg.467]

A variety of complexes exists in solid or liquid state at ambient temperature, in the range required for battery operation. Liquid polybromine phases are preferred since they enable storage of the active material externally to the electrochemical cell stack in a tank, hence enhancing the... [Pg.177]

Other measurements of AfG involve measuring AG for equilibrium processes, such as the measurement of equilibrium constants, reversible voltages of electrochemical cells, and phase equilibrium measurements. These methods especially come into play in the measurement of Afand AfG for ions in solution, which are processes that we will now consider. [Pg.457]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

Figure 1. Sketch of an electrochemical cell whose equilibrium (open circuit) potential difference is AE. (a) Conventional configuration and (b) short-circuited configuration with an air gap. M and R are the electrodes, S is the solvent (electrolyte solution). Cu indicates the cables connecting the two electrodes to a measuring instrument (or to each other).

Figure 1. Sketch of an electrochemical cell whose equilibrium (open circuit) potential difference is AE. (a) Conventional configuration and (b) short-circuited configuration with an air gap. M and R are the electrodes, S is the solvent (electrolyte solution). Cu indicates the cables connecting the two electrodes to a measuring instrument (or to each other). <P is the work to transfer an electron from M (or R) to the exterior of the phase through S.
While from a structural point of view metal/solution and metal/vac-uum interfaces are qualitatively comparable even if quantitatively dissimilar, in the presence of ionic adsorbates the comparability is more difficult and is possible only if specific conditions are met.33 This is sketched in Fig. 7. A UHV metal surface with ions adsorbed on it is electrically neutral because of a counter-charge on the metal phase. These conditions cannot be compared with the condition of a = 0 in an electrochemical cell, but with the conditions in which the adsorbed charge is balanced by an equal and opposite charge on the metal surface, i.e., the condition of zero diffuse-layer charge. This is a further complication in comparing electrochemical and UHV conditions and has been pointed out in the case of Br adsorption on Ag single-crystal faces.88... [Pg.25]

P J. Gellings, H.S.A. Koopmans, and A.J, Burgraaf, Electrocatalytic Phenomena in Gas Phase Reactions in Solid Electrolyte Electrochemical Cells, Appl. Catal. 39, 1-24 (1988). [Pg.107]

Measurement of electrical potential differences requires a complete electrical circuit, i.e., the electrochemical cell. An electrochemical galvanic cell consisting of all conducting phases, and among them at least one interface separating two immiscible electrolyte solutions is called for short a liquid galvanic cell. In contrast, the system composed of con-... [Pg.25]

FIG. 2 Cyclic voltammogram of the ferricenium transfer across the water-DCE interface at lOmVs. The electrochemical cell featured a similar arrangement to Fig. 1(b), but the organic phase contained 2mM of ferrocene. Heterogeneous oxidation of Fc occurred in the presence of 0.2mM CUSO4 in the aqueous phase. Supporting electrolytes were lOmM 02804 and lOmM BTPPATPBCl. The transfer of the standard tetramethylammonium (TMA+) under the same condition is also superimposed. [Pg.194]

The electrochemical cell for the polarographic measurements had a four-electrode configuration equipped with a microsyringe, and was connected to a computer-assisted data-acquisition system [7]. On the other hand, the cyclic voltammetric measurements that are also assisted by a computer data-acquisition system were carried out using a gel electrode that contains the aqueous phase [8]. The cell structure was as follows ... [Pg.630]

The theory on the level of the electrode and on the electrochemical cell is sufficiently advanced [4-7]. In this connection, it is necessary to mention the works of J.Newman and R.White s group [8-12], In the majority of publications, the macroscopical approach is used. The authors take into account the transport process and material balance within the system in a proper way. The analysis of the flows in the porous matrix or in the cell takes generally into consideration the diffusion, migration and convection processes. While computing transport processes in the concentrated electrolytes the Stefan-Maxwell equations are used. To calculate electron transfer in a solid phase the Ohm s law in its differential form is used. The electrochemical transformations within the electrodes are described by the Batler-Volmer equation. The internal surface of the electrode, where electrochemical process runs, is frequently presented as a certain function of the porosity or as a certain state of the reagents transformation. To describe this function, various modeling or empirical equations are offered, and they... [Pg.462]

Wu B. and White R. E., Modeling of a Nickel-Hydrogen Cell. Phase Reactions in Nickel Active Material. J. Electrochem Soc. 2001 148 A595-609. [Pg.479]

Electroactive substance(s), when passing through an electrochemical cell, will be electrolyzed resulting in charge (coulomb) transfer between mobile phase and working electrode. [Pg.31]

The cell for SPE electrode studies was the same one shown in the earlier chapter. To supply methanol om the gas phase and to control the temperature, the system shown Fig. 3-3 was used. The electrochemical cell was placed in a convection furnace whose temperature was precisely controlled. The reference electrode was placed outside of the furnace and the connecting electrolyte tube was cooled with water jacket to prevent the tube from being blocked by the vapor. [Pg.122]


See other pages where Electrochemical cell phases is mentioned: [Pg.1947]    [Pg.190]    [Pg.274]    [Pg.513]    [Pg.55]    [Pg.183]    [Pg.96]    [Pg.163]    [Pg.59]    [Pg.375]    [Pg.430]    [Pg.430]    [Pg.431]    [Pg.432]    [Pg.543]    [Pg.734]    [Pg.740]    [Pg.747]    [Pg.343]    [Pg.318]    [Pg.558]    [Pg.17]    [Pg.232]    [Pg.133]    [Pg.321]    [Pg.322]    [Pg.309]    [Pg.81]    [Pg.311]    [Pg.244]    [Pg.246]    [Pg.177]    [Pg.193]    [Pg.195]    [Pg.286]   
See also in sourсe #XX -- [ Pg.354 ]




SEARCH



Electrochemical cell

Phase cell

© 2024 chempedia.info