Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cell chemical reactions

The expression cell reaction is used almost exclusively for the spontaneous reactions occurring in galvanic cells [i-iv]. However, also in electrolysis cells (- electrochemical cells) chemical transformations take place, when current is passed through the cell from an external source. Evidently, we may also speak of cell reactions even in this case, albeit additional energy is needed for the reaction to proceed since AG > 0. [Pg.81]

Therefore, the macrohomogeneous concept can also be adequately extended to the whole cell. For instance, a framework for macrohomogeneous modeling of porous SOFC electrodes is possible by taking into account multicomponent diffusion, multiple electrochemical and chemical reactions, and electronic and ionic conduction. The concept applies to both porous anodes and cathodes. The derivation of the model is illustrated by considering different chemical and electrochemical reaction schemes. The framework is general enough so that additional chemical and electrochemical reactions can be accounted for. [Pg.133]

It is just the opposite of that occurring in Daniell s galvanic cell. Reaction (13.6) cannot be achieved spontaneously in a pure chemical manner without receiving energy (heat, for example) from the surroundings. An electrochemical cell whose reaction cell is not spontaneous is called an electrolytic cell or a substance-producing device (Fig. 13.3). [Pg.208]

The heat source is related to the enthalpy change of the reactions, and the free-energy change of reactions (15a) and (15b) combined with (15e) determines the fuel cell Nernst potential. If chemical equilibrium is achieved in the system, the fuel composition, heat generation, and Nernst potential can be determined from thermodynamic theory. However, chemical equilibrium is usually not attained. In such cases, fuel composition and other information cannot be rigorously determined and must be approximated. The details of the reaction mechanism are complicated and usually not well understood, both for electrochemical and chemical reactions. [Pg.304]

In electrochemical cells (to be discussed later), if a particular gas participates in a chemical reaction at an electrode, the observed electromotive force is a fiinction of the partial pressure of the reactive gas and not of the partial pressures of any other gases present. [Pg.359]

As seen in previous sections, the standard entropy AS of a chemical reaction can be detemiined from the equilibrium constant K and its temperature derivative, or equivalently from the temperature derivative of the standard emf of a reversible electrochemical cell. As in the previous case, calorimetric measurements on the separate reactants and products, plus the usual extrapolation, will... [Pg.370]

Design possibilities for electrolytic cells are numerous, and the design chosen for a particular electrochemical process depends on factors such as the need to separate anode and cathode reactants or products, the concentrations of feedstocks, desired subsequent chemical reactions of electrolysis products, transport of electroactive species to electrode surfaces, and electrode materials and shapes. Cells may be arranged in series and/or parallel circuits. Some cell design possibiUties for electrolytic cells are... [Pg.70]

There are, however, numerous appHcations forthcoming ia medium- to small-scale processiag. Especially attractive on this scale is the pharmaceutical fine chemical or high value added chemical synthesis (see Fine chemicals). In these processes multistep reactions are common, and an electroorganic reaction step can aid ia process simplification. Off the shelf lab electrochemical cells, which have scaled-up versions, are also available. The materials of constmction for these cells are compatible with most organic chemicals. [Pg.86]

Product Recovery. Comparison of the electrochemical cell to a chemical reactor shows the electrochemical cell to have two general features that impact product recovery. CeU product is usuaUy Uquid, can be aqueous, and is likely to contain electrolyte. In addition, there is a second product from the counter electrode, even if this is only a gas. Electrolyte conservation and purity are usual requirements. Because product separation from the starting material may be difficult, use of reaction to completion is desirable ceUs would be mn batch or plug flow. The water balance over the whole flow sheet needs to be considered, especiaUy for divided ceUs where membranes transport a number of moles of water per Earaday. At the inception of a proposed electroorganic process, the product recovery and refining should be included in the evaluation to determine tme viabUity. Thus early ceU work needs to be carried out with the preferred electrolyte/solvent and conversion. The economic aspects of product recovery strategies have been discussed (89). Some process flow sheets are also available (61). [Pg.95]

An electrochemical cell is a device by means of which the enthalpy (or heat content) of a spontaneous chemical reaction is converted into electrical energy conversely, an electrolytic cell is a device in which electrical energy is used to bring about a chemical change with a consequent increase in the enthalpy of the system. Both types of cells are characterised by the fact that during their operation charge transfer takes place at one electrode in a direction that leads to the oxidation of either the electrode or of a species in solution, whilst the converse process of reduction occurs at the other electrode. [Pg.77]

Electrochemical cells are familiar—a flashlight operates on current drawn from electrochemical cells called dry cells, and automobiles are started with the aid of a battery, a set of electrochemical cells in tandem. The last time you changed the dry cells in a flashlight because the old ones were dead, did you wonder what had happened inside those cells Why does electric current flow from a new dry cell but not from one that has been used many hours We shall see that this is an important question in chemistry. By studying the chemical reactions that occur in an electrochemical cell we discover a basis for predicting whether equilibrium in a chemical reaction fa-... [Pg.199]

We see that the overall chemical reaction that occurs in an electrochemical cell is conveniently described in terms of two types of half-reactions. In one, electrons are lost in the other, they are gained. To distinguish these half-reactions we need two identifying names. [Pg.202]

These ideas, developed for an electrochemical cell, have great importance in chemistry because they are also applicable to chemical reactions that occur in a single beaker. Without an electric circuit or an opportunity for electric current to flow, the chemical changes that occur in a cell can be duplicated in a single solution. It is reasonable to apply the same explanation. [Pg.202]

The value of this list is obvious. Any half-reaction can be combined with the reverse of another half-reaction (in the proportion for which electrons gained is equal to electrons lost) to give a possible chemical reaction. Our list permits us to predict whether equilibrium favors reactants or products. We would like to expand our list and to make it more quantitative. Electrochemical cells help us do this. [Pg.206]

Now let s take a more detailed look into the electrochemical cell. Figure 12-5 shows a cross-section of a cell that uses the same chemical reaction as that depicted in Figure 12-1. The only difference is that the two solutions are connected differently. In Figure 12-1 a tube containing a solution of an electrolyte (such as KNOa) provides a conducting path. In Figure 12-5 the silver nitrate is placed in a porous porcelain cup. Since the silver nitrate and copper sulfate solutions can seep through the porous cup, they provide their own connection to each other. [Pg.206]

Measurement of Equilibrium Constants Electrochemical cells can be used to measure equilibrium constants for chemical reactions. For example, consider the cell... [Pg.487]

Why Do We Need to Know This Material The topics described in this chapter may one day unlock a virtually inexhaustible supply of clean energy supplied daily by the Sun. The key is electrochemistry, the study of the interaction of electricity and chemical reactions. The transfer of electrons from one species to another is one of the fundamental processes underlying life, photosynthesis, fuel cells, and the refining of metals. An understanding of how electrons are transferred helps us to design ways to use chemical reactions to generate electricity and to use electricity to bring about chemical reactions. Electrochemical measurements also allow us to determine the values of thermodynamic quantities. [Pg.603]

Electrochemical cells play important roles in both the purification and the preservation of metallic materials. Redox reactions are used throughout the chemical industry to extract metals from their ores. However, redox reactions also corrode the artifacts that industry produces. What redox reactions achieve, redox reactions can destroy. [Pg.634]

A photoelectrochemical cell is an electrochemical cell that uses light to carry out a chemical reaction. This type of cell is being considered for the production of hydrogen from water. The silicon electrodes in a photoelectrochemical cell react with water ... [Pg.645]

This is a quantitative problem, so we follow the standard strategy. The problem asks about an actual potential under nonstandard conditions. Before we determine the potential, we must visualize the electrochemical cell and determine the balanced chemical reaction. The half-reactions are given in the problem. To obtain the balanced equation, reverse the direction of the reduction half-reaction with the... [Pg.1394]


See other pages where Electrochemical cell chemical reactions is mentioned: [Pg.195]    [Pg.39]    [Pg.995]    [Pg.14]    [Pg.318]    [Pg.204]    [Pg.1947]    [Pg.190]    [Pg.770]    [Pg.521]    [Pg.90]    [Pg.841]    [Pg.1367]    [Pg.157]    [Pg.163]    [Pg.129]    [Pg.188]    [Pg.1017]    [Pg.610]    [Pg.948]    [Pg.268]    [Pg.17]    [Pg.43]    [Pg.96]    [Pg.263]    [Pg.267]    [Pg.343]    [Pg.1017]    [Pg.28]   
See also in sourсe #XX -- [ Pg.351 ]




SEARCH



Cell reaction cells

Cell reactions

Electrochemical cell

Electrochemical cell reaction

Electrochemical reactions

Electrochemical-chemical

© 2024 chempedia.info