Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electro-optical absorption spectroscopy

Since the photophoretic force depends on the electromagnetic absorption efficiency Q y , which is sensitive to wavelength, photophoretic force measurements can be used as a tool to study absorption spectroscopy. This was first recognized by Pope et al. (1979), who showed that the spectrum of the photophoretic force on a 10 foa diameter perylene crystallite agrees with the optical spectrum. This was accomplished by suspending a perylene particle in a Millikan chamber with electro-optic feedback control and measuring the photophoretic force as a function of the wavelength of the laser illumination. Improvements on the technique and additional data were obtained by Arnold and Amani (1980), and Arnold et al. (1980) provided further details of their photophoretic spectrometer. A photophoretic spectrum of a crystallite of cadmium sulfide reported by Arnold and Amani is presented in Fig. 11. [Pg.25]

Electro-absorption (EA) spectroscopy, where optical absorption is observed under the application of an electric field to the sample, is another method that can distinguish between localised and inter-band excitations. The electric field produces a Stark shift of allowed optical absorptions and renders forbidden transitions allowed by mixing the wavefunctions of the excited states. Excitons show a quadratic Stark (Kerr) effect with a spectral profile that is the first derivative of the absorption spectrum for localised (Frenkel) excitons and the second derivative for charge transfer excitons, i.e. [Pg.347]

Transient terahertz spectroscopy Time-resolved terahertz (THz) spectroscopy (TRTS) has been used to measure the transient photoconductivity of injected electrons in dye-sensitised titanium oxide with subpicosecond time resolution (Beard et al, 2002 Turner et al, 2002). Terahertz probes cover the far-infrared (10-600 cm or 0.3-20 THz) region of the spectrum and measure frequency-dependent photoconductivity. The sample is excited by an ultrafast optical pulse to initiate electron injection and subsequently probed with a THz pulse. In many THz detection schemes, the time-dependent electric field 6 f) of the THz probe pulse is measured by free-space electro-optic sampling (Beard et al, 2002). Both the amplitude and the phase of the electric field can be determined, from which the complex conductivity of the injected electrons can be obtained. Fitting the complex conductivity allows the determination of carrier concentration and mobility. The time evolution of these quantities can be determined by varying the delay time between the optical pump and THz probe pulses. The advantage of this technique is that it provides detailed information on the dynamics of the injected electrons in the semiconductor and complements the time-resolved fluorescence and transient absorption techniques, which often focus on the dynamics of the adsorbates. A similar technique, time-resolved microwave conductivity, has been used to study injection kinetics in dye-sensitised nanocrystalline thin films (Fessenden and Kamat, 1995). However, its time resolution is limited to longer than 1 ns. [Pg.643]


See other pages where Electro-optical absorption spectroscopy is mentioned: [Pg.288]    [Pg.288]    [Pg.90]    [Pg.110]    [Pg.99]    [Pg.257]    [Pg.769]    [Pg.88]    [Pg.1297]    [Pg.268]    [Pg.13]    [Pg.5835]    [Pg.310]    [Pg.310]    [Pg.548]    [Pg.697]    [Pg.15]    [Pg.334]    [Pg.220]    [Pg.231]    [Pg.571]    [Pg.98]    [Pg.246]    [Pg.272]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Electro-optic

Electro-optical

Optical absorption

Optical absorption spectroscopy

Optical spectroscopy

© 2024 chempedia.info