Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical conductivity electron numbers

To calculate electron production must be balanced against electron depletion. Free electrons in the gas can become attached to any of a number of species in a combustion gas which have reasonably large electron affinities and which can readily capture electrons to form negative ions. In a combustion gas, such species include OH (1.83 eV), O (1.46 eV), NO2 (3.68 eV), NO (0.09 eV), and others. Because of its relatively high concentration, its abUity to capture electrons, and thus its abUity to reduce the electrical conductivity of the gas, the most important negative ion is usuaUyOH . [Pg.419]

This article addresses the synthesis, properties, and appHcations of redox dopable electronically conducting polymers and presents an overview of the field, drawing on specific examples to illustrate general concepts. There have been a number of excellent review articles (1—13). Metal particle-filled polymers, where electrical conductivity is the result of percolation of conducting filler particles in an insulating matrix (14) and ionically conducting polymers, where charge-transport is the result of the motion of ions and is thus a problem of mass transport (15), are not discussed. [Pg.35]

The total electrical resistance at room temperature includes tire contribution from scattering of conduction electrons by the vacancies as well as by ion-core and impurity scattering. If the experiment is repeated at a number of high temperarnre anneals, then the effects of temperarnre on tire vacancy conuibu-tion can be isolated, since the other two terms will be constant providing that... [Pg.173]

For local deviations from random atomic distribution electrical resistivity is affected just by the diffuse scattering of conduction electrons LRO in addition will contribute to resistivity by superlattice Bragg scattering, thus changing the effective number of conduction electrons. When measuring resistivity at a low and constant temperature no phonon scattering need be considered ar a rather simple formula results ... [Pg.220]

In accordance with Ohm s law, if we were to double the intensity X of the electric field, the current would be doubled that is to say, the plane CD would have to be placed at twice the distance from AB. If the number of conduction electrons per unit volume is p, and the distance between the planes CD and AB is denoted by v, we have n = pv, since we are discussing the unit area. Hence the net resultant charge transported in unit time across AB, that is, the current density, is given by... [Pg.43]

Electrical Conduction by Proton Jumps. As mentioned in Sec. 24, a hydroxyl ion may be regarded as a doubly charged oxygen ion 0 , containing a proton inside the electronic cloud of the ion, which has the same number of electrons as a fluoride ion. The radius of the hydroxyl ion cannot be very different from that of the fluoride ion. But it will be seen from Table 2 that the mobility of the hydroxyl ion is about four times as great. This arises from the fact that a large part of the mobility is undoubtedly due to proton transfers.1 Consider a water molecule in contact with a hydroxyl ion. If a proton jumps from the molecule to the ion,... [Pg.73]

The generally accepted theory of electric superconductivity of metals is based upon an assumed interaction between the conduction electrons and phonons in the crystal.1-3 The resonating-valence-bond theory, which is a theoiy of the electronic structure of metals developed about 20 years ago,4-6 provides the basis for a detailed description of the electron-phonon interaction, in relation to the atomic numbers of elements and the composition of alloys, and leads, as described below, to the conclusion that there are two classes of superconductors, crest superconductors and trough superconductors. [Pg.825]

The electrical conduction in a solution, which is expressed in terms of the electric charge passing across a certain section of the solution per second, depends on (i) the number of ions in the solution (ii) the charge on each ion (which is a multiple of the electronic charge) and (iii) the velocity of the ions under the applied field. When equivalent conductances are considered at infinite dilution, the effects of the first and second factors become equal for all solutions. However, the velocities of the ions, which depend on their size and the viscosity of the solution, may be different. For each ion, the ionic conductance has a constant value at a fixed temperature and is the same no matter of which electrolytes it constitutes a part. It is expressed in ohnT1 cm-2 and is directly proportional to the mobilities or speeds of the ions. If for a uni-univalent electrolyte the ionic mobilities of the cations and anions are denoted, respectively, by U+ and U, the following relationships hold ... [Pg.617]

Mo6 octahedron) the cluster is electron-precise, the valence band is fully occupied and the compounds are semiconductors, as, for example, (Mo4Ru2)Se8 (it has two Mo atoms substituted by Ru atoms in the cluster). In PbMo6Sg there are only 22 electrons per cluster the electron holes facilitate a better electrical conductivity below 14 K it becomes a superconductor. By incorporating other elements in the cluster and by the choice of the electron-donating element A, the number of electrons in the cluster can be varied within certain limits (19 to 24 electrons for the octahedral skeleton). With the lower electron numbers the weakened cluster bonds show up in trigonally elongated octahedra. [Pg.143]

An important point is that the electrochemically driven charge transport in these polymeric materials is not dependent on the presence of mixed valence interactions which are well known to give rise to electronic conductivity — in a number of cation radical crystalline salts. This is clearly seen from the absorption spectrum of the electrochemically oxidized pyrazoline films (Figure 8) which show no evidence for the mixed valence states that are the structural electronic prerequisites for electrical conductivity in the crystalline salts. A more definitive confirmation of this point is provided by the absorption spectrum (Figure 10) of electrochemically oxidized TTF polymer films which shows... [Pg.446]

Electrical and thermal conductivity are important diffusion layer properties that affect the fuel cell s overall performance. The maferial chosen to be the DL in a fuel cell must have a good electrical conductivity in order for the electron flow from the FF plates to the CLs (and vice versa) to have the least possible resistance. Similarly, the DL material must have good thermal properties so that heat generated in the active zones can be removed efficiently. Therefore, in order to choose an optimal material it is critical to be able to measure the electrical and thermal conductivity. In this section, a number of procedures used fo measure fhese paramefers will be discussed. [Pg.272]

This parabolic law, which indicates that diffusion is rate-limiting, is of overwhelming importance for scale formation. Wagner (1933) showed that the parabolic scale constant (and hence, rate of oxidation) can be calculated using the enthalpy of formation of the corrosion product, the electrical conductivity of the protective film and the transport number of the ions and electrons in the film. [Pg.496]

Multiple Heck reactions have also been applied in a number of ways to prepare polymers (Scheme 40). One-dimensionally 7r-conjugated polymers are attractive materials because of their optical and electrical properties resulting from 7r-electron delocalization along their main chains. Among these, poly(p-phenylenevinylene) (PPV) shows high electrical conductivity, large non-linear optical responses, and electroluminescent activity. One approach... [Pg.331]

Recall from Figure 1.15 that metals have free electrons in what is called the valence band and have empty orbitals forming what is called the conduction band. In Chapter 6, we will see how this electronic structure contributes to the electrical conductivity of a metallic material. It turns out that these same electronic configurations can be responsible for thermal as well as electrical conduction. When electrons act as the thermal energy carriers, they contribute an electronic heat capacity, C e, that is proportional to both the number of valence electrons per unit volume, n, and the absolute temperature, T ... [Pg.322]


See other pages where Electrical conductivity electron numbers is mentioned: [Pg.1281]    [Pg.252]    [Pg.108]    [Pg.115]    [Pg.58]    [Pg.151]    [Pg.467]    [Pg.390]    [Pg.509]    [Pg.552]    [Pg.596]    [Pg.34]    [Pg.120]    [Pg.982]    [Pg.244]    [Pg.231]    [Pg.374]    [Pg.392]    [Pg.91]    [Pg.4]    [Pg.107]    [Pg.113]    [Pg.335]    [Pg.342]    [Pg.350]    [Pg.638]    [Pg.150]    [Pg.161]    [Pg.56]    [Pg.58]    [Pg.233]    [Pg.68]    [Pg.212]    [Pg.541]    [Pg.10]    [Pg.207]   
See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Conductance electronic

Conducting electrons

Conduction electrons

Conductivity: electronic

Electric Electronic

Electron conductance

Electron conductivity

Electron number

Electronic conduction

Electronically conducting

Electronics conduction

© 2024 chempedia.info