Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electric field molecular

According to these equations, for a given separation system, the main parameters involved in the separation of SDS-protein complexes are the electric force, the frictional force, and the retardation coefficient. These parameters are in turn affected by the strength of the electric field, molecular charge, analyte shape and size, polymer concentration, and temperature. [Pg.210]

Strong Electrical Fields Molecular Transport Due to Electroporation... [Pg.455]

C. Yeh and M. L. Berkowitz, Dielectric constant of water at high electric fields molecular dynamics study, J. Chem. Phys., 110, 7935-7942 (1999]. [Pg.525]

The nonlinear response of an individual molecule depends on die orientation of the molecule with respect to the polarization of the applied and detected electric fields. The same situation prevails for an ensemble of molecules at an interface. It follows that we may gamer infonnation about molecular orientation at surfaces and interfaces by appropriate measurements of the polarization dependence of the nonlinear response, taken together with a model for the nonlinear response of the relevant molecule in a standard orientation. [Pg.1290]

Tang S L, McGhie A J and Suna A 1993 Molecular-resolution imaging of insulating macromolecules with the scanning tunnelling microscope via a nontunnelling, electric-field-induced mechanism Phys. Rev. B 47 3850... [Pg.1722]

A MBER spectrometer is shown schematically in figure C1.3.1. The teclmique relies on using two inhomogeneous electric fields, the A and B fields, to focus the beam. Since the Stark effect is different for different rotational states, the A and B fields can be set up so that a particular rotational state (with a positive Stark effect) is focused onto the detector. In MBER spectroscopy, the molecular beam is irradiated with microwave or radiofrequency radiation in the... [Pg.2440]

A few Van der Waals complexes have been observed using the analogous teclmique of molecular beam magnetic resonance, in which the molecules are focused using a magnetic rather than an electric field. [Pg.2440]

As witli tlie nematic phase, a chiral version of tlie smectic C phase has been observed and is denoted SniC. In tliis phase, tlie director rotates around tlie cone generated by tlie tilt angle [9,32]. This phase is helielectric, i.e. tlie spontaneous polarization induced by dipolar ordering (transverse to tlie molecular long axis) rotates around a helix. However, if tlie helix is unwound by external forces such as surface interactions, or electric fields or by compensating tlie pitch in a mixture, so tliat it becomes infinite, tlie phase becomes ferroelectric. This is tlie basis of ferroelectric liquid crystal displays (section C2.2.4.4). If tliere is an alternation in polarization direction between layers tlie phase can be ferrielectric or antiferroelectric. A smectic A phase foniied by chiral molecules is sometimes denoted SiiiA, altliough, due to the untilted symmetry of tlie phase, it is not itself chiral. This notation is strictly incorrect because tlie asterisk should be used to indicate the chirality of tlie phase and not tliat of tlie constituent molecules. [Pg.2549]

The representation of molecular properties on molecular surfaces is only possible with values based on scalar fields. If vector fields, such as the electric fields of molecules, or potential directions of hydrogen bridge bonding, need to be visualized, other methods of representation must be applied. Generally, directed properties are displayed by spatially oriented cones or by field lines. [Pg.137]

Ire boundary element method of Kashin is similar in spirit to the polarisable continuum model, lut the surface of the cavity is taken to be the molecular surface of the solute [Kashin and lamboodiri 1987 Kashin 1990]. This cavity surface is divided into small boimdary elements, he solute is modelled as a set of atoms with point polarisabilities. The electric field induces 1 dipole proportional to its polarisability. The electric field at an atom has contributions from lipoles on other atoms in the molecule, from polarisation charges on the boundary, and where appropriate) from the charges of electrolytes in the solution. The charge density is issumed to be constant within each boundary element but is not reduced to a single )oint as in the PCM model. A set of linear equations can be set up to describe the electrostatic nteractions within the system. The solutions to these equations give the boundary element harge distribution and the induced dipoles, from which thermodynamic quantities can be letermined. [Pg.614]

Essentially all experimentally measured properties can be thought of as arising through the response of the system to some externally applied perturbation or disturbance. In turn, the calculation of such properties can be formulated in terms of the response of the energy E or wavefunction P to a perturbation. For example, molecular dipole moments p are measured, via electric-field deflection, in terms of the change in energy... [Pg.507]

The molecular quantities can be best understood as a Taylor series expansion. For example, the energy of the molecule E would be the sum of the energy without an electric field present, Eq, and corrections for the dipole, polarizability, hyperpolarizability, and the like ... [Pg.256]

When a neutral molecule settles onto an electrode bearing a positive charge, the electrons in the molecule are attracted to the electrode surface and the nuclei are repelled (Figure 5.2), viz., the electric field in the molecule is distorted. If the electric field is sufficiently intense, this distortion in the molecular field reduces the energy barrier against an electron leaving the molecule (ionization). A process known... [Pg.23]

In field ionization (or field desorption), application of a large electric potential to a surface of high curvature allows a very intense electric field to be generated. Such positive or negative fields lead to electrons being stripped from or added to molecules lying on the surface. The positive or negative molecular ions so produced are mass measured by the mass spectrometer. [Pg.387]

Since e > eo, we seek to explain the smaller field in the presence of the dielectric in terms of molecular properties and the way in which they are affected by the electric field. An easy way to visualize the effect is to picture an opposing surface charge-indicated as in Fig. 10.4b—accumulating on the dielectric. This partially offsets the charge on the capacitor plates to a net charge density a - so that Eq becomes E and is given by... [Pg.667]

Now let us examine the molecular origin of Molecular polarity may be the result of either a permanent dipole moment p or an induced dipole moment ind here the latter arises from the distortion of the charge distribution in a molecule due to an electric field. We saw in Chap. 8 that each of these types of polarity are sources of intermolecular attraction. In the present discussion we assume that no permanent dipoles are present and note that the induced dipole moment is proportional to the net field strength at the molecule ... [Pg.667]

Equations (10.17) and (10.18) show that both the relative dielectric constant and the refractive index of a substance are measurable properties of matter that quantify the interaction between matter and electric fields of whatever origin. The polarizability is the molecular parameter which is pertinent to this interaction. We shall see in the next section that a also plays an important role in the theory of light scattering. The following example illustrates the use of Eq. (10.17) to evaluate a and considers one aspect of the applicability of this quantity to light scattering. [Pg.669]

When monochromatic radiation falls on a molecular sample in the gas phase, and is not absorbed by it, the oscillating electric field E (see Equation 2.1) of the radiation induces in the molecule an electric dipole which is related to E by the polarizability... [Pg.125]

The ir spectra acquired in this way are extremely sensitive to the orientation of the surface molecules. Molecules must have a significant component of a molecular vibration perpendicular to the surface to be sensed by coupling with the highly directional electric field. Molecules whose dipole moments are perfectly parallel to the surface caimot couple to the existing electric fields, and therefore, are ir transparent by this method. This selectivity of the approach for molecule dipole moments perpendicular as opposed to parallel to the surface is known as the surface selection rule of irras. [Pg.288]

Electroporation. When bacteria are exposed to an electric field a number of physical and biochemical changes occur. The bacterial membrane becomes polarized at low electric field. When the membrane potential reaches a critical value of 200—300 mV, areas of reversible local disorganization and transient breakdown occur resulting in a permeable membrane. This results in both molecular influx and efflux. The nature of the membrane disturbance is not clearly understood but bacteria, yeast, and fungi are capable of DNA uptake (see Yeasts). This method, called electroporation, has been used to transform a variety of bacterial and yeast strains that are recalcitrant to other methods (2). Apparatus for electroporation is commercially available, and constant improvements in the design are being made. [Pg.247]

Further subclassification of nonlinear optical materials can be explained by the foUowiag two equations of microscopic, ie, atomic or molecular, polarization,, and macroscopic polarization, P, as power series ia the appHed electric field, E (disregarding quadmpolar terms which are unimportant for device appHcations) ... [Pg.134]

In plasma chromatography, molecular ions of the heavy organic material to be analy2ed are produced in an ionizer and pass by means of a shutter electrode into a drift region. The velocity of drift through an inert gas at approximately 101 kPa (1 atm) under the influence of an appHed electric field depends on the molecular weight of the sample. The various sonic species are separated and collected every few milliseconds on an electrode. The technique has been employed for studying upper atmosphere ion molecule reactions and for chemical analysis (100). [Pg.115]


See other pages where Electric field molecular is mentioned: [Pg.498]    [Pg.441]    [Pg.173]    [Pg.255]    [Pg.62]    [Pg.498]    [Pg.441]    [Pg.173]    [Pg.255]    [Pg.62]    [Pg.180]    [Pg.1438]    [Pg.2440]    [Pg.2482]    [Pg.2796]    [Pg.268]    [Pg.178]    [Pg.236]    [Pg.237]    [Pg.618]    [Pg.56]    [Pg.60]    [Pg.67]    [Pg.129]    [Pg.363]    [Pg.243]    [Pg.249]    [Pg.269]    [Pg.271]    [Pg.427]    [Pg.208]    [Pg.549]    [Pg.448]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Crystals, electric field molecular

Molecular Electric Fields and Field Gradients

Molecular distortion induced electric field

Molecular properties external electric fields

Molecular properties internal electric fields

Static electric field molecular magnetic properties

© 2024 chempedia.info