Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Earth chromium

Devi PS, Rao MS (1989) Rare-earth chromium citrates as precursors for rare-earth chromi-ties lanthanum biscitrato chromium(III) dihydrate, La[Cr(CjH507)J 2H2O. Thermochim Acta 153 181-191... [Pg.350]

Solid-State Lasers. Sohd-state lasers (37) use glassy or crystalline host materials containing some active species. The term soHd-state as used in connection with lasers does not imply semiconductors rather it appHes to soHd materials containing impurity ions. The impurity ions are typically ions of the transition metals, such as chromium, or ions of the rare-earth series, such as neodymium (see Lanthanides). Most often, the soHd material is in the form of a cylindrical rod with the ends poHshed flat and parallel, but a variety of other forms have been used, including slabs and cylindrical rods with the ends cut at Brewster s angle. [Pg.7]

Zirconium occurs naturally as a siUcate in zircon [1490-68-2] the oxide baddeleyite [12036-23-6] and in other oxide compounds. Zircon is an almost ubiquitous mineral, occurring ia granular limestone, gneiss, syenite, granite, sandstone, and many other minerals, albeit in small proportion, so that zircon is widely distributed in the earth s cmst. The average concentration of zirconium ia the earth s cmst is estimated at 220 ppm, about the same abundance as barium (250 ppm) and chromium (200 ppm) (2). [Pg.426]

Chromium [7440-47-3] Cr, also loosely called chrome, is the twenty-first element in relative abundance with respect to the earth s cmst, ranking with V,... [Pg.113]

Zn, Ni, Cu, and W, yet is the seventh most abundant element overall because Cr is concentrated in the earth s core and mantle (1,2). It has atomic number 24 and belongs to Group 6 (VIB) of the Periodic Table and is positioned between vanadium and manganese. Other Group 6 members are molybdenum and tungsten. On a toimage basis, chromium ranks fourth among the metals and thirteenth of aU mineral commodities in commercial production. [Pg.113]

Chromium, 122 ppm of the earth s crustal rocks, is comparable in abundance with vanadium (136 ppm) and chlorine (126 ppm), but molybdenum and tungsten (both 1.2 ppm) are much rarer (cf. Ho 1.4 ppm, Tb 1.2 ppm), and the concentration in their ores is low. The only ore of chromium of any commercial importance is chromite, FeCr204, which is produced principally in southern Africa (where 96% of the known reserves are located), the former Soviet Union and the Philippines. Other less plentiful sources are crocoite, PbCr04, and chrome ochre, Cr203, while the gemstones emerald and ruby owe their colours to traces of chromium (pp. 107, 242). [Pg.1003]

The relatively high cost and lack of domestic supply of noble metals has spurred considerable efforts toward the development of nonnoble metal catalysts for automobile exhaust control. A very large number of base metal oxides and mixtures of oxides have been considered, especially the transition metals, such as copper, chromium, nickel, manganese, cobalt vanadium, and iron. Particularly prominent are the copper chromites, which are mixtures of the oxides of copper and chromium, with various promoters added. These materials are active in the oxidation of CO and hydrocarbons, as well as in the reduction of NO in the presence of CO (55-59). Rare earth oxides, such as lanthanum cobaltate and lanthanum lead manganite with Perovskite structure, have been investigated for CO oxidation, but have not been tested and shown to be sufficiently active under realistic and demanding conditions (60-63). Hopcalities are out-... [Pg.79]

The raw materials needed to supply about ten million new automobiles a year do not impose a difficult problem except in the case of the noble metals. Present technology indicates that each car may need up to ten pounds of pellets, two pounds of monoliths, or two pounds of metal alloys. The refractory oxide support materials are usually a mixture of silica, alumina, magnesia, lithium oxide, and zirconium oxide. Fifty thousand tons of such materials a year do not raise serious problems (47). The base metal oxides requirement per car may be 0.1 to 1 lb per car, or up to five thousand tons a year. The current U.S. annual consumption of copper, manganese, and chromium is above a million tons per year, and the consumption of nickel and tungsten above a hundred thousand tons per year. The only important metals used at the low rate of five thousand tons per year are cobalt, vanadium, and the rare earths. [Pg.81]

The reduction of a transition-metal oxide and boron oxide by an electropositive metal such as Al, Mg or an alkali metal has been used as a pathway to titanium, iron, chromium, tungsten and alkali-earth borides . ... [Pg.268]

Chromium makes up just 0.012% of the Earth s crust, yet it is an important industrial metal. The main use of chromium is in metal alloys. Stainless steel, for example, contains as much as 20% chromium. Nichrome, a 60 40 alloy of nickel and chromium, is used to make heat-radiating wires in electrical devices such as toasters and hair dryers. Another important application of chromium metal is as a protective and decorative coating for the surface of metal objects, as described in Chapter 19. [Pg.1472]

Uranium is not a very rare element. It is widely disseminated in nature with estimates of its average abundance in the Earth s crust varying from 2 to 4 ppm, close to that of molybdenum, tungsten, arsenic, and beryllium, but richer than such metals as bismuth, cadmium, mercury, and silver its crustal abundance is 2.7 ppm. The economically usable tenor of uranium ore deposits is about 0.2%, and hence the concentration factor needed to form economic ore deposits is about 750. In contrast, the enrichment factors needed to form usable ore deposits of common metals such as lead and chromium are as high as 3125 and 1750, respectively. [Pg.70]

Examples of metals which are prepared by the metallothermic reduction of oxides include manganese, chromium, vanadium, zirconium, and niobium. In a manner similar to the production of magnesium by the Pidgeon process, some of the rare earth metals have been produced by the metallothermic reduction-distillation process. [Pg.380]


See other pages where Earth chromium is mentioned: [Pg.731]    [Pg.735]    [Pg.27]    [Pg.31]    [Pg.710]    [Pg.731]    [Pg.735]    [Pg.27]    [Pg.31]    [Pg.710]    [Pg.124]    [Pg.429]    [Pg.6]    [Pg.539]    [Pg.379]    [Pg.393]    [Pg.119]    [Pg.121]    [Pg.169]    [Pg.194]    [Pg.405]    [Pg.53]    [Pg.1027]    [Pg.1051]    [Pg.401]    [Pg.726]    [Pg.354]    [Pg.38]    [Pg.96]    [Pg.73]    [Pg.387]    [Pg.511]    [Pg.534]    [Pg.181]    [Pg.104]    [Pg.1675]    [Pg.52]    [Pg.213]    [Pg.79]    [Pg.194]   
See also in sourсe #XX -- [ Pg.713 ]




SEARCH



Chromium bulk Earth composition

© 2024 chempedia.info