Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic data reconciliation quasi-steady state

All of the previous ideas are developed further in Chapter 8, where the analysis of dynamic and quasi-steady-state processes is considered. Chapter 9 is devoted to the general problem of joint parameter estimation-data reconciliation, an important issue in assessing plant performance. In addition, some techniques for estimating the covariance matrix from the measurements are discussed in Chapter 10. New trends in this field are summarized in Chapter 11, and the last chapter is devoted to illustrations of the application of the previously presented techniques to various practical cases. [Pg.17]

In this chapter, the data reconciliation problem for dynamic/quasi-steady-state evolving processes is considered. The problem of measurement bias is extended to consider dynamic situations. Finally in this chapter, an alternative approach for nonlinear dynamic data reconciliation using nonlinear programming techniques will be discussed. [Pg.156]

In the previous chapters the data reconciliation problem was analyzed for systems that could be assumed to be operating at steady state. Consequently, only one set of data was available. In some practical situations, the occurrence of various disturbances generates a dynamic or quasi-steady-state response of the process, thus nullifying this steady-state assumption. In this chapter, the notions previously developed are extended to cover these cases. [Pg.156]

The second problem to be tackled is data reconciliation for applications in which the dominant time constant of the dynamic response of the system is much smaller than the period in which disturbances enter the system. Under this assumption the system displays quasi-steady-state behavior. Thus, we are concerned with a process that is essentially at steady state, except for slow drifts or occasional sudden transitions between steady states. In such cases, the estimates should be consistent, that is, they should satisfy the mass and energy balances. [Pg.157]

In this chapter different aspects of data processing and reconciliation in a dynamic environment were briefly discussed. Application of the least square formulation in a recursive way was shown to lead to the classical Kalman filter formulation. A simpler situation, assuming quasi-steady-state behavior of the process, allows application of these ideas to practical problems, without the need of a complete dynamic model of the process. [Pg.174]


See also in sourсe #XX -- [ Pg.140 ]

See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Dynamic data reconciliation

Dynamic steady state

Quasi-steady

Quasi-steady state

State dynamical

Steady state data reconciliation

© 2024 chempedia.info