Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double bonds, cytochrome

This impressive reaction is catalyzed by stearoyl-CoA desaturase, a 53-kD enzyme containing a nonheme iron center. NADH and oxygen (Og) are required, as are two other proteins cytochrome 65 reductase (a 43-kD flavo-protein) and cytochrome 65 (16.7 kD). All three proteins are associated with the endoplasmic reticulum membrane. Cytochrome reductase transfers a pair of electrons from NADH through FAD to cytochrome (Figure 25.14). Oxidation of reduced cytochrome be, is coupled to reduction of nonheme Fe to Fe in the desaturase. The Fe accepts a pair of electrons (one at a time in a cycle) from cytochrome b and creates a cis double bond at the 9,10-posi-tion of the stearoyl-CoA substrate. Og is the terminal electron acceptor in this fatty acyl desaturation cycle. Note that two water molecules are made, which means that four electrons are transferred overall. Two of these come through the reaction sequence from NADH, and two come from the fatty acyl substrate that is being dehydrogenated. [Pg.815]

Scheme 10.5 Tentative mechanism for cytochrome P450-cata-lyzed epoxidation of a double bond. The reactive iron-oxo species VII (see Scheme 10.4) reacts with the olefin to give a charge transfer (CT) complex. This complex then resolves into the epoxide either through a radical or through a cationic intermediate. Scheme 10.5 Tentative mechanism for cytochrome P450-cata-lyzed epoxidation of a double bond. The reactive iron-oxo species VII (see Scheme 10.4) reacts with the olefin to give a charge transfer (CT) complex. This complex then resolves into the epoxide either through a radical or through a cationic intermediate.
Scheme 10.8 Biosynthesis of epothilone. Individual PKS domains are represented as circles and individual NRPS domains as hexagons. Acyl carrier proteins (ACPs) and thiola-tion domains (T) are posttranslationally modified by a phos-phopantetheinyl group to which the biosynthetic intermediates are covalently bound throughout the chain assembly. The thioesterase domain (TE) cyclizes the fully assembled carbon chain to give the 16-membered lactone. Following dehydration of Cl 2—Cl 3 to give epothilones C and D, the final step in epothilone biosynthesis is the epoxidation of the C12=C13 double bond by the cytochrome P450 enzyme P450epol<. KS ketosyn-thase KS(Y) active-site tyrosine mutant of KS AT acyltransfer-ase C condensation domain A adenylation domain ... Scheme 10.8 Biosynthesis of epothilone. Individual PKS domains are represented as circles and individual NRPS domains as hexagons. Acyl carrier proteins (ACPs) and thiola-tion domains (T) are posttranslationally modified by a phos-phopantetheinyl group to which the biosynthetic intermediates are covalently bound throughout the chain assembly. The thioesterase domain (TE) cyclizes the fully assembled carbon chain to give the 16-membered lactone. Following dehydration of Cl 2—Cl 3 to give epothilones C and D, the final step in epothilone biosynthesis is the epoxidation of the C12=C13 double bond by the cytochrome P450 enzyme P450epol<. KS ketosyn-thase KS(Y) active-site tyrosine mutant of KS AT acyltransfer-ase C condensation domain A adenylation domain ...
To summarize, squalene epoxidase is a flavoprotein capable of catalyzing the insertion of oxygen into the 2,3-double bond of squalene to give 2,3-oxidosqualene, with the second oxygen atom from 02 being reduced to water. The reducing equivalents necessary for this transformation are relayed from NADPH through NADPH-cytochrome c reductase to the flavin cofactor of the epoxidase. [Pg.373]

Chlorophyll, plastoquinone, and cytochrome are complicated molecules, but each has an extended pattern of single bonds alternating with double bonds. Molecules that contain such networks are particularly good at absorbing light and at undergoing reversible oxidation-reduction reactions. These properties are at the heart of photosynthesis. [Pg.655]

BA trans-3.4-dihvdrodiol cannot be separated from BA trans-8.9-dihydrodiol in several HPLC conditions (27-29). Quantification of BA trana-3,4-dihydrodiol by HPLC can only be accomplished after converting the 3,4-dihydrodiol to its diacetate (25.26). The BA trans-3.4-dihydrodiol formed in BA metabolism by liver microsomes from pheno-barbital-treated rats was determined to have a 3R,4R/3S,4S enantiomer ratio of 69 31 (30). Recently we have determined the optical purity of the BA trans-3.4-dihvdrodiol formed in the metabolism of BA by three liver microsomes prepared from untreated rats and rats that had been pretreated with an enzyme inducer. As shown in Table II, cytochrome P-450 isozymes contained in liver microsomes from 3-methylcholanthrene- or phenobarbital-treated rats had similar stereoselectivity toward the 3,4-double bond of BA. BA trans-3.4-dihydrodiol is formed via the 3,4-epoxide intermediate (31). [Pg.31]

The hybridization of the carbon in an alkene makes it even more difficult to break the carbon-hydrogen bond of a vinylic carbon than of a saturated carbon. As a consequence, cytochrome P450, rather than abstracting a hydrogen atom, catalyzes the addition of an oxygen atom to the double bond leading to the formation of an epoxide as shown in Figure 4.72. [Pg.87]

Mcclanahan RH, Huitric AC, Pearson PG, et al. Evidence for a cytochrome-P-450 catalyzed allylic rearrangement with double-bond topomerization. J Am Chem Soc 1988 110(6) 1979— 1981. [Pg.106]

Fatty acyl CoA may be elongated and desaturated (to a limited extent in humans) using enzymes associated with the smooth endoplasmic reticulum (SER). Cytochrome is involved in the desaturation reactions. These enzymes carmot introduce double bonds past position 9 in the fetty add. [Pg.209]

A less common reactive species is the Fe peroxo anion expected from two-electron reduction of O2 at a hemoprotein iron atom (Fig. 14, structure A). Protonation of this intermediate would yield the Fe —OOH precursor (Fig. 14, structure B) of the ferryl species. However, it is now clear that the Fe peroxo anion can directly react as a nucleophile with highly electrophilic substrates such as aldehydes. Addition of the peroxo anion to the aldehyde, followed by homolytic scission of the dioxygen bond, is now accepted as the mechanism for the carbon-carbon bond cleavage reactions catalyzed by several cytochrome P450 enzymes, including aromatase, lanosterol 14-demethylase, and sterol 17-lyase (133). A similar nucleophilic addition of the Fe peroxo anion to a carbon-nitrogen double bond has been invoked in the mechanism of the nitric oxide synthases (133). [Pg.397]

No studies were located regarding metabolism of 2,3-benzofuran in humans or animals. However, the metabolism of several other substituted furans has been shown to involve oxidation by P-450, with the unsubstituted double bond of the furan ring converted either to an epoxide (Boyd 1981) or to a dialdehyde (Ravindranath et al. 1984). Pretreatment with inducers and inhibitors of P-450 modified the toxicity of a single intraperitoneal injection of 2,3-benzofuran to male mice (McMurtry and Mitchell 1977). Oral exposure to 2,3-benzofuran altered the activity of P-450 and other enzymes in the livers of female mice (Heine et al. 1986). These experiments indicate that cytochrome P-450 may be involved in the toxicity of 2,3-benzofuran, but do not provide a clear picture of 2,3-benzofuran metabolism. [Pg.32]

Enzyme complexes occur in the endoplasmic reticulum of animal cells that desaturate at A5 if there is a double bond at the A8 position, or at A6 if there is a double bond at the A9 position. These enzymes are different from each other and from the A9-desaturase discussed in the previous section, but the A5 and A6 desaturases do appear to utilize the same cytochrome b5 reductase and cytochrome b5 mentioned previously. Also present in the endoplasmic reticulum are enzymes that elongate saturated and unsaturated fatty acids by two carbons. As in the biosynthesis of palmitic acid, the fatty acid elongation system uses malonyl-CoA as a donor of the two-carbon unit. A combination of the desaturation and elongation enzymes allows for the biosynthesis of arachidonic acid and docosahexaenoic acid in the mammalian liver. As an example, the pathway by which linoleic acid is converted to arachidonic acid is shown in figure 18.17. Interestingly, cats are unable to synthesize arachidonic acid from linoleic acid. This may be why cats are carnivores and depend on other animals to make arachidonic acid for them. Also note that the elongation system in the endoplasmic reticulum is important for the conversion of palmitoyl-CoA to stearoyl-CoA. [Pg.426]

The active oxygen species of cytochromes P-450 is reactive enough to transfer its oxygen atom to most organic compounds. However, the most frequently encountered reactions are (1) the hydroxylation of C—H bonds, (2) the epoxidation of double bonds, (3) the hydroxylation of aromatic rings, and (4) the transfer of an oxygen atom to compounds containing an N, S, or P heteroatom. [Pg.336]

Cytochromes P-450 also catalyze the hydroxylation of aromatic rings. In most cases, these reactions involve the intermediate formation of arene oxides derived from the epoxidation of a double bond of the aromatic compound and an isomerization of these very reactive epoxides into the corresponding phenols. [Pg.337]

In ergosterol biosynthesis, side chain alkylation of lanosterol normally takes place to build 24-methylenedihydrolanosterol, which itself is then the substrate for demethylation reactions at and C. The C -demethylation has been studied in detail. It is an oxidative demethylation catalyzed by a cytochrome P -system. The first step involved in this reaction is the hydroxylation of the Cj -methy1-group to form the C -hydroxymethyl derivative. A second hydroxylation and loss of water lead to the C -formyl intermediate, which is hydroxylized a third time to form the corresponding carboxylic acid. Decarboxylation does not directly take place, but proceeds instead by abstraction of a proton from C, followed by elimination and formation of a A 4-double bond. The NADPH-dependent reduction of the A14 -double bond finishes the demethylation reaction. Subsequently, demethylation at has to take place twice, followed by a dehydrogenation reaction in A" -position and isomerization from A8 to A7 and A24(28) to A22. respectively. [Pg.29]


See other pages where Double bonds, cytochrome is mentioned: [Pg.172]    [Pg.172]    [Pg.126]    [Pg.353]    [Pg.358]    [Pg.362]    [Pg.362]    [Pg.368]    [Pg.376]    [Pg.29]    [Pg.40]    [Pg.191]    [Pg.405]    [Pg.40]    [Pg.526]    [Pg.126]    [Pg.65]    [Pg.387]    [Pg.178]    [Pg.34]    [Pg.314]    [Pg.79]    [Pg.319]    [Pg.185]    [Pg.208]    [Pg.155]    [Pg.694]    [Pg.798]    [Pg.222]    [Pg.980]    [Pg.1245]    [Pg.1253]    [Pg.426]    [Pg.177]    [Pg.337]   


SEARCH



Carbon double bonds, cytochrome

© 2024 chempedia.info