Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double bond, electronic structure molecular orbitals

Molecular orbital theory may provide an explanation for stereochemical differences between carboxylate-metal ion and phosphate-metal ion interactions. Detailed ab initio calculations demonstrate that the semipo-lar 1 0 double bond of RsP=0 is electronically different from the C=0 double bond, for example, as found in H2C=0 (Kutzelnigg, 1977 Wallmeier and Kutzelnigg, 1979). The P=0 double bond is best described as a partial triple bond, that is, as one full a bond and two mutually perpendicular half-7r bonds (formed by backbonding between the electrons of oxygen and the empty d orbitals of phosphorus). Given this situation, a lone electron pair should be oriented on oxygen nearly opposite the P=0 bond, and these molecular orbital considerations for P=0 may extend to the phosphinyl monoanion 0-P=0. If this extension is valid, then the electronic structure of 0-P=0 should not favor bidentate metal complexation by phosphate this is in accord with the results by Alexander et al. (1990). [Pg.295]

In this chapter, we develop a model of bonding that can be applied to molecules as simple as H2 or as complex as chlorophyll. We begin with a description of bonding based on the idea of overlapping atomic orbitals. We then extend the model to include the molecular shapes described in Chapter 9. Next we apply the model to molecules with double and triple bonds. Then we present variations on the orbital overlap model that encompass electrons distributed across three, four, or more atoms, including the extended systems of molecules such as chlorophyll. Finally, we show how to generalize the model to describe the electronic structures of metals and semiconductors. [Pg.656]

Our treatment of O2 shows that the extra complexity of the molecular orbital approach explains features that a simpler description of bonding cannot explain. The Lewis structure of O2 does not reveal its two unpaired electrons, but an MO approach does. The simple (t-tt description of the double bond in O2 does not predict that the bond in 2 is stronger than that in O2, but an MO approach does. As we show in the following sections, the molecular orbital model has even greater advantages in explaining bonding when Lewis structures show the presence of resonance. [Pg.700]

It is readily apparent that the three a bonds are capable of holding the six bonding electrons in the a t and e molecular orbitals. The possibility of some 7r-bonding is seen in the molecular orbital diagram as a result of the availability of the a2" orbital, and in fact there is some experimental evidence for this type of interaction. The sum of the covalent radii of boron and fluorine atoms is about 152 pm (1.52 A), but the experimental B-F bond distance in BF3 is about 129.5 pm (1.295 A). Part of this "bond shortening" may be due to partial double bonds resulting from the 7r-bonding. A way to show this is by means of the three resonance structures of the valence bond type that can be shown as... [Pg.156]

Heteroindacenes have been prepared and studied by Hafner and co-workers.198 199 The syntheses of 1,3,5,7-tetra-te/t-butyl-4-azaindacene, its AA-oxide, and l,3,5,7-tetra-tot-butyl-4-phospha-s-indacenes have been recently reported (Scheme 66).200 The 12-jt-electron delocalized systems have been studied by dynamic NMR and X-ray and were subjected to molecular orbital calculations, and there is strong evidence of electron delocalization. However, X-ray crystallographic data for 4-phospha-s-indacene 164 and the 4-7V-oxide 164 show that there is a dual orientation in the crystal this disorder with two different orientations of the molecule does not allow for conclusions regarding bond lengths or delocalization, and the mediated structures show a D2h symmetry rather than C2h with localized double bonds. [Pg.24]

Stabilized allyl radical will be stabilized further if substituents are introduced. This stabilization occurs to different degrees in the ground state and the transition structure for rotation. In the ground state the substituent acts on a delocalized radical. Its influence on this state should be smaller than in the transition structure, where it acts on a localized radical. In the transition state the double bond and the atom with the unpaired electron are decoupled, i.e. in the simple Hiickel molecular orbital picture, the electron is localized in an orbital perpendicular to the jt(- c bond. [Pg.160]

Many molecules that have several double bonds are much less reactive than might be expected. The reason for this is that the double bonds in these structures cannot be localized unequivocally. Their n orbitals are not confined to the space between the double-bonded atoms, but form a shared, extended Tu-molecular orbital. Structures with this property are referred to as resonance hybrids, because it is impossible to describe their actual bonding structure using standard formulas. One can either use what are known as resonance structures—i. e., idealized configurations in which n electrons are assigned to specific atoms (cf pp. 32 and 66, for example)—or one can use dashed lines as in Fig. B to suggest the extent of the delocalized orbitals. (Details are discussed in chemistry textbooks.)... [Pg.4]


See other pages where Double bond, electronic structure molecular orbitals is mentioned: [Pg.252]    [Pg.40]    [Pg.61]    [Pg.2]    [Pg.40]    [Pg.148]    [Pg.738]    [Pg.32]    [Pg.297]    [Pg.302]    [Pg.1042]    [Pg.311]    [Pg.97]    [Pg.259]    [Pg.63]    [Pg.75]    [Pg.57]    [Pg.716]    [Pg.721]    [Pg.53]    [Pg.89]    [Pg.97]    [Pg.154]    [Pg.67]    [Pg.36]    [Pg.266]    [Pg.271]    [Pg.74]    [Pg.86]    [Pg.58]    [Pg.189]    [Pg.127]    [Pg.78]    [Pg.178]    [Pg.55]    [Pg.69]    [Pg.40]    [Pg.104]    [Pg.79]    [Pg.261]    [Pg.180]   
See also in sourсe #XX -- [ Pg.22 ]

See also in sourсe #XX -- [ Pg.22 ]

See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Bond structure, double

Bonding molecular orbital

Bonding molecular orbitals

Bonds electronic structure

Double 33 structure

Double bonds, orbitals

Electron orbitals

Electron, orbiting

Molecular bonding

Molecular bonds/orbitals

Molecular double bond

Molecular electronic structure

Molecular orbitals bonding orbital

Molecular orbitals structures

Molecular structure bonding

Orbital electrons

Orbits structure

© 2024 chempedia.info