Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Donor charge transfer fluorescence

As already discussed in Section II, larger systems like the diphenylsul-fones also exhibit a charge-transfer fluorescence, and the donor can be shown not to be the amino but the entire anilino group. In the case of the anilino-substituted anthracene ADMA this has directly been demonstrated by the bridged model compound ADMAB. [Pg.156]

Chemical reactions can be studied at the single-molecule level by measuring the fluorescence lifetime of an excited state that can undergo reaction in competition with fluorescence. Reactions involving electron transfer (section C3.2) are among the most accessible via such teclmiques, and are particularly attractive candidates for study as a means of testing relationships between charge-transfer optical spectra and electron-transfer rates. If the physical parameters that detennine the reaction probability, such as overlap between the donor and acceptor orbitals. [Pg.2497]

A number of fluorescent dyes with internal charge transfer mechanism allow the molecule to twist (rotate) between the electron donor and electron acceptor moieties of the fluorescent dipole. In most cases, the twisted conformation is energetically preferred in the excited Si state, whereas the molecule prefers a planar or near-planar conformation in the ground state. For this reason, photoexcitation induces a twisting motion, whereas relaxation to the ground state returns the molecule to the planar conformation. Moreover, the Si — So energy gap is generally smaller in the twisted conformation, and relaxation from the twisted state causes either a... [Pg.300]

A. Weller and K. Zachariasse 157-160) thoroughly investigated this radical-ion reaction, starting from the observation that the fluorescence of aromatic hydrocarbons is quenched very efficiently by electron donors such as N,N diethylaniline which results in a new, red-shifted emission in nonpolar solvents This emission was ascribed to an excited charge-transfer complex 1(ArDD(H )), designated heteroexcimer, with a dipole moment of 10D. In polar solvents, however, quenching of aromatic hydrocarbon fluorescence by diethylaniline is not accompanied by hetero-excimer emission in this case the free radical anions Ar<7> and cations D were formed. [Pg.123]

Li YQ, Bricks JL, Resch-Genger U et al (2006) Bifunctional charge transfer operated fluorescent probes with acceptor and donor receptors. 2. Bifunctional cation coordination behavior of biphenyl-type sensor molecules incorporating 2, 2 6, 2"-terpyridine acceptors. J Phys Chem A 110 10972-10984... [Pg.98]

Kollmannsberger M, Rurack K, Resch-Genger U et al (2000) Design of an efficient charge-transfer processing molecular system containing a weak electron donor spectroscopic and redox properties and cation-induced fluorescence enhancement. Chem Phys Lett 329 363-369... [Pg.101]

Such a solvent relaxation explains the increase in the red-shift of the fluorescence spectrum as the polarity of the solvent increases. The effect of polarity on fluorescence emission will be further discussed in Chapter 7, together with polarity probes. Moreover, when a cation receptor is linked to an intramolecular charge transfer fluorophore so that the bound cation can interact with either the donor group or the acceptor group, the ICT is perturbed the consequent changes in photophysical properties of the fluorophore can be used for sensing cations (see Section 10.3.3). [Pg.63]

When the emissive state is a charge transfer state that is not attainable by direct excitation (e.g. which results from electron transfer in a donor-bridge-acceptor molecule see example at the end of the next section), the theories described above cannot be applied because the absorption spectrum of the charge transfer state is not known. Weller s theory for exciplexes is then more appropriate and only deals with the shift of the fluorescence spectrum, which is given by... [Pg.212]

Intramolecular charge transfer in conjugated donor-acceptor molecules may be accompanied by internal rotation leading to TICT (twisted intramolecular charge transfer) states. A dual fluorescence may be observed as in PCT-5 (Letard et al., 1994) (which resembles the well-known DMABN (see section 3.4.4) containing a dimethylamino group instead of the monoaza-15-crown-5) the short-wavelength... [Pg.300]

Intramolecular charge transfer in p-anthracene-(CH2)3-p-Ar,Af-dimethylaniline (61) has been observed174 in non-polar solvents. Measurements of fluorescence-decay (by the picosecond laser method) allow some conclusions about charge-transfer dynamics in solution internal rotation is required to reach a favourable geometry for the formation of intramolecular charge-transfer between the donor (aniline) and the acceptor (anthracene). [Pg.446]

This type of probe, often called fluorescent photoinduced electron transfer (PET) sensors, has been extensively studied (for reviews, see Refs. 22 and 23). Figure 2.2 illustrates how a cation can control the photoinduced charge transfer in a fluoroiono-phore in which the cation receptor is an electron donor (e.g., amino group) and the fluorophore (e.g., anthracene) plays the role of an acceptor. On excitation of the fluorophore, an electron of the highest occupied molecular orbital (HOMO) is promoted to the lowest unoccupied molecular orbital (LUMO), which enables photoinduced electron transfer from the HOMO of the donor (belonging to the free cation receptor) to that of the fluorophore, causing fluorescence quenching of the latter. On... [Pg.25]

Figure 5.2. Grabowski s model of TICT formation in DMABN the locally excited (LE) state with near-planar conformation is a precursor for the TICT state with near perpendicular geometry. The reaction coordinate involves charge transfer from donor D to acceptor A. intramolecular twisting between these subunits, and solvent relaxation around the newly created strong dipole. Decay kinetics of LE and rise kinetics of the TICT state can be followed separately by observing the two bands of the dual fluorescence. For medium polar solvents, well-behaved first-order kinetics are observed, with the rise-time of the product equal to the decay time of the precursor, but for the more complex alcohol solvents, kinetics can strongly deviate from exponentiality, interpretable by time-dependent rate constants. 52 ... Figure 5.2. Grabowski s model of TICT formation in DMABN the locally excited (LE) state with near-planar conformation is a precursor for the TICT state with near perpendicular geometry. The reaction coordinate involves charge transfer from donor D to acceptor A. intramolecular twisting between these subunits, and solvent relaxation around the newly created strong dipole. Decay kinetics of LE and rise kinetics of the TICT state can be followed separately by observing the two bands of the dual fluorescence. For medium polar solvents, well-behaved first-order kinetics are observed, with the rise-time of the product equal to the decay time of the precursor, but for the more complex alcohol solvents, kinetics can strongly deviate from exponentiality, interpretable by time-dependent rate constants. 52 ...
In fac-(bpy)Re(I) (CO)3-A (where bpy is 2,2 -bipyridine and A is an aromatic amine), the d-7t(Re)—>jr (bpy) MLCT fluorescent excited state is strongly quenched via intramolecular aniline-Re charge transfer leading to a nonfluorescent LLCT state. By incorporating the donor amino group belonging to the A moiety into a crown-macrocycle, Schanze and Mac Queen(137) have provided a new luminescent cation sensor whose quantum yield of fluorescence raises from 0.0017 (without cation) to... [Pg.140]

Z. R. Grabowski, K. Rotkiewicz, and A. Siemiarczuk, Dual fluorescence of donor-acceptor molecules and the twisted intramolecular charge transfer (TICT) states, J. Lumin. 18, 420 (1979). [Pg.143]


See other pages where Donor charge transfer fluorescence is mentioned: [Pg.433]    [Pg.40]    [Pg.22]    [Pg.1796]    [Pg.247]    [Pg.26]    [Pg.500]    [Pg.69]    [Pg.145]    [Pg.143]    [Pg.87]    [Pg.89]    [Pg.92]    [Pg.129]    [Pg.108]    [Pg.320]    [Pg.43]    [Pg.152]    [Pg.225]    [Pg.226]    [Pg.270]    [Pg.279]    [Pg.280]    [Pg.280]    [Pg.283]    [Pg.15]    [Pg.8]    [Pg.111]    [Pg.280]    [Pg.298]    [Pg.446]    [Pg.693]    [Pg.30]    [Pg.113]    [Pg.130]    [Pg.130]    [Pg.140]   
See also in sourсe #XX -- [ Pg.703 ]




SEARCH



Charge transfer fluorescence

Donor charge

Donor fluorescence

Donor transfer

Fluorescent transfer

© 2024 chempedia.info