Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disodium spinide

The conductivity of salts in solvents of low dielectric constant, and of metals in liquid ammonia, exhibit minima which may be explained in terms of an equilibrium between ions and a coulombic compound of two ions, or "ion pairs." This equilibrium conforms to the law of mass action. At limiting conductance in solutions of sodium in liquid ammonia, part of the current is carried by metal ions, but seven-eighths is carried by electrions. Following the BLA model, it is assumed that when two ion pairs, consisting of a sodium ion and an electron, come together, the spins of the two electrons couple to form disodium spinide. Increase in conductivity past the minimum is assumed to be caused by dissociation of disodium spinide into sodium ions and spinions. [Pg.7]

There is reason to believe that an equilibrium of this type exists between the sodium ions and the electrion to form an ion pair as a result of coulombic interactions. If the conductance data for sodium are used to determine the equilibrium constant of sodium in liquid ammonia for computing the constant of the ion pair equilibrium, the experimental data do not conform to values required for such an equilibrium. This is because electrons in dilute solutions exhibit magnetic properties, from which we may conclude that, at very low concentrations, the electron has a spin of l/2 Bohr unit. It is, therefore, necessary to take into account the effect of the decreasing proportion of electrons that may be spin-coupled and interacting with the positive ions of the solvent. One of us (Evers) made the simplest possible assumption, following a model proposed by Becker, Lindquist, and Alder (BLA), namely that when two ion pairs, consisting of a sodium ion and an electron, come together the spins of the two electrons couple to form disodium spinide, and that this coulombic compound is not dissociated into ions at low concentrations. [Pg.10]

The role played by the micro Wien effect in dissociating the disodium spinide with increasing concentration beyond the conductance minimum is strongly indicated by the temperature coefficient of the conductance of solutions of sodium and potassium in liquid ammonia. Here we have data for the temperature coefficient of sodium and potassium from relatively dilute solutions up to saturation. [Pg.11]


See other pages where Disodium spinide is mentioned: [Pg.10]    [Pg.11]    [Pg.10]    [Pg.11]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Disodium

© 2024 chempedia.info