Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dirac Roothaan equation

Thus, the evaluation of the X-operator in matrix form requires the diago-nalization of the modified Dirac-Roothaan equation, but its diagonalization posed the pitfalls that had led to the derivation of exact-decoupling methods in order to avoid pathologies originating from the negative-energy states in the first place. However, if this step can be accomplished with an approximate potential V —> V, which does not include the full electron-electron interaction, then it can be a very efficient procedure. [Pg.538]

However, there is a stationary variation principle of precisely the type employed in the quantum chemical linear variation method. In the derivation of the Roothaan equations based on finite basis set expansions of Schrodinger wavefimctions, one insists only that the Rayleigh quotient be stationary with respect to the variational parameters, and then assumes that the variational principle guarantees an absolute minimum. In the corresponding linear equations based on the Dirac equation, the stationary condition is imposed, but no further assumption is made about the nature of the stationary point. [Pg.8]

The relativistic correction for the kinetic energy in the Dirac equation is naturally applicable to the Kohn-Sham equation. This relativistic Kohn-Sham equation is called the Dirac-KohnSham equation (Rajagopal 1978 MacDonald and Vosko 1979). The Dirac-Kohn-Sham equation is founded on the Rajagopal-Callaway theorem, which is the relativistic expansion of the Hohenberg-Kohn theorem on the basis of QED (Rajagopal and Callaway 1973). In this theorem, two theorems are contained The first theorem proves that the four-component external potential, which is the vector-potential-extended external potential, is determined by the four-component current density, which is the current-density-extended electron density. On the other hand, the second theorem establishes the variational principle for every four-component current density. See Sect. 6.5 for vector potential and current density. Consequently, the solution of the Dirac-Kohn-Sham equation is represented by the four-component orbital. This four-component orbital is often called a molecular spinor. However, this name includes no indication of orbital, which is the solution of one-electron SCF equations moreover, the targets of the calculations are not restricted to molecules. Therefore, in this book, this four-component orbital is called an orbital spinor. The Dirac-Kohn-Sham wavefunction is represented by the Slater determinant of orbital spinors (see Sect. 2.3). Following the Roothaan method (see Sect. 2.5), orbital spinors are represented by a linear combination of the four-component basis spinor functions, Xp, ... [Pg.147]

If we were to assume a basis set expansion for the spinor of the type of a linear combination of atomic orbitals (LCAO) we could differentiate the La-grangian functional directly and would obtain equations in matrix form (compare the Dirac-Hartree-Roothaan equations in chapter 10). Here, we proceed in a more general way and proceed with the general method of variations. The variation of any of the matrix elements over an operator o containing in L[ tpi, ey ] may be written as the limit for infinitely small variations of a given orbital ipi as... [Pg.307]

In order to determine these unknowns the variational minimax principle of chapter 8 is invoked. For this procedure, we may again start from the energy expression of section 10.2 and differentiate it or directly insert the basis set expansion of Eq. (10.3) into the SCF Eqs. (8.185). These options are depicted in Figure 10.2. The resulting Dirac-Hartree-Fock equations in basis set representation are called Dirac-Hartree-Fock-Roothaan equations according to the work by Roothaan [511] and Hall [512] on the nonrelativistic analog. [Pg.420]

Figure 10.2 Two routes for the derivation of Dirac-Hartree-Fock equations in basis set representation in the iower right oorner the Roothaan equations (recall the caveats in sections 8.2.3 and 8.7.1 required for the application of the variational principle). Figure 10.2 Two routes for the derivation of Dirac-Hartree-Fock equations in basis set representation in the iower right oorner the Roothaan equations (recall the caveats in sections 8.2.3 and 8.7.1 required for the application of the variational principle).
Hence, the relativistic analog of the spin-restriction in nonrelativistic closed-shell Hartree-Fock theory is Kramers-restricted Dirac-Hartree-Fock theory. We should emphasize that our derivation of the Roothaan equation above is the pedestrian way chosen in order to produce this matrix-SCF equation step by step. The most sophisticated formulations are the Kramers-restricted quaternion Dirac-Hartree-Fock implementations [286,318,319]. A basis of Kramers pairs, i.e., one adapted to time-reversal s)mimetry, transforms into another basis under quatemionic unitary transformation [589]. This can be exploited not only for the optimization of Dirac-Hartree-Fock spinors, but also for MCSCF spinors. In a Kramers one-electron basis, an operator O invariant under time reversal possesses a specific block structure. [Pg.424]

The relativistic theory and computation of atomic structures and processes has therefore attained some sort of maturity and the various codes now available are widely used. Those mentioned so far were based on ideas originating from Hartree and his students [28], and have been developed in much the same way as the non-relativistic self-consistent field theory recorded in [28-30]. All these methods rely on the numerical solution, using finite differences, of the coupled differential equations for radial orbital wave-functions of the self-consistent field. This makes them unsuitable for the study of molecules, for which it is preferable to expand the radial amplitudes in a suitably chosen set of analytic functions. This nonrelativistic matrix Hartree-Fock method, as it is often termed, was pioneered by Hall and Lennard-Jones [31], Hall [32,33] and Roothaan [34,35], and it was Roothaan s students, Synek [36] and Kim [37] who were the first to attempt to solve the corresponding matrix Dirac-Hartree-Fock equations. Kim was able to obtain solutions for the ground state of neon in 1967, but at the expense of some numerical instability, and it seemed at the time that the matrix Dirac-Hartree-Fock scheme would not be a serious competitor to the finite difference codes. [Pg.109]

Dirac-Hartree-Fock-Roothaan Matrix Equations... [Pg.419]

All exact-decoupling approaches can be related to the modified Dirac equation and we closely follow here the work presented in Refs. [16,647]. Two-component electrons-only Hamiltonians can be obtained from block-diagonalizing the four-component (one-electron) modified Dirac equation in matrix representation. As we have discussed in chapters 8 and 10 for four-component Dirac-Hartree-Fock-Roothaan calculations, basis functions for the small component must fulfill certain constraints as otherwise variational instability and a wrong nonrelativistic limit [547] would result. The correct nonrelativistic limit will be obtained if the kinetic-balance condition,

[Pg.533]

Other calculations tested using this molecule include two-dimensional, fully numerical solutions of the molecular Dirac equation and LCAO Hartree-Fock-Slater wave functions [6,7] local density approximations to the moment of momentum with Hartree-Fock-Roothaan wave functions [8] and the effect on bond formation in momentum space [9]. Also available are the effects of information theory basis set quality on LCAO-SCF-MO calculations [10,11] density function theory applied to Hartree-Fock wave functions [11] higher-order energies in... [Pg.11]


See other pages where Dirac Roothaan equation is mentioned: [Pg.79]    [Pg.261]    [Pg.215]    [Pg.115]    [Pg.4]    [Pg.215]    [Pg.289]    [Pg.315]    [Pg.614]    [Pg.635]    [Pg.404]    [Pg.436]    [Pg.535]    [Pg.337]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Dirac equation

Roothaan

Roothaan equations

© 2024 chempedia.info