Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbital dipole moment

The atomic unit (AU) of dipole moment is that of a proton and electron separated by a distance equal to the first Bohr orbit, oq. Similarly, the au of polarizability is Oq [125]. Express and o for NH3 using both the cgs/esu and SI approach. [Pg.250]

The initial values, a, , are derived by correlations with dipole moments of a series of conjugated systems. The exchange integrals are taken from Abraham and Hudson [38] and are considered as being independent of charge. The r-charges are then calculated from the orbital coefficients, c,j, of the HMO theory according to Eq. (14). [Pg.333]

Molecular dipole moments are often used as descriptors in QPSR models. They are calculated reliably by most quantum mechanical techniques, not least because they are part of the parameterization data for semi-empirical MO techniques. Higher multipole moments are especially easily available from semi-empirical calculations using the natural atomic orbital-point charge (NAO-PC) technique [40], but can also be calculated rehably using ab-initio or DFT methods. They have been used for some QSPR models. [Pg.392]

Quantum chemical descriptors such as atomic charges, HOMO and LUMO energies, HOMO and LUMO orbital energy differences, atom-atom polarizabilities, super-delocalizabilities, molecular polarizabilities, dipole moments, and energies sucb as the beat of formation, ionization potential, electron affinity, and energy of protonation are applicable in QSAR/QSPR studies. A review is given by Karelson et al. [45]. [Pg.427]

Obtain the dipole moment of methylenecyclopropene by a MNDO calculation and compare your answer with the result obtained from Hnckel molecular orbital calculations. [Pg.297]

Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions. Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions.
The measurements are predicted computationally with orbital-based techniques that can compute transition dipole moments (and thus intensities) for transitions between electronic states. VCD is particularly difficult to predict due to the fact that the Born-Oppenheimer approximation is not valid for this property. Thus, there is a choice between using the wave functions computed with the Born-Oppenheimer approximation giving limited accuracy, or very computationally intensive exact computations. Further technical difficulties are encountered due to the gauge dependence of many techniques (dependence on the coordinate system origin). [Pg.113]

State averaging gives a wave function that describes the first few electronic states equally well. This is done by computing several states at once with the same orbitals. It also keeps the wave functions strictly orthogonal. This is necessary to accurately compute the transition dipole moments. [Pg.220]

You can interpret results, including dipole moments and atomic charges, using the simple concepts and familiar vocabulary of the Linear Combination of Atomic Orbitals (LCAO)-molecular orbital (MO) theory. [Pg.33]

In addition to total energy and gradient, HyperChem can use quantum mechanical methods to calculate several other properties. The properties include the dipole moment, total electron density, total spin density, electrostatic potential, heats of formation, orbital energy levels, vibrational normal modes and frequencies, infrared spectrum intensities, and ultraviolet-visible spectrum frequencies and intensities. The HyperChem log file includes energy, gradient, and dipole values, while HIN files store atomic charge values. [Pg.51]

After you choose the computation method and options, you can use Start Log on the File menu to record results, such as total energies, orbital energies, dipole moments, atomic charges, enthalpies of formation (for the CNDO, INDO, MINDO/3, MNDO, AMI, PM3, ZINDO/I, and ZINDO/S methods), etc. [Pg.120]

Energy, geometry, dipole moment, and the electrostatic potential all have a clear relation to experimental values. Calculated atomic charges are a different matter. There are various ways to define atomic charges. HyperChem uses Mulliken atomic charges, which are commonly used in Molecular Orbital theory. These quantities have only an approximate relation to experiment their values are sensitive to the basis set and to the method of calculation. [Pg.137]

For a quantum mechanical calculation, the single point calculation leads to a wave function for the molecular system and considerably more information than just the energy and gradient are available. In principle, any expectation value might be computed. You can get plots of the individual orbitals, the total (or spin) electron density and the electrostatic field around the molecule. You can see the orbital energies in the status line when you plot an orbital. Finally, the log file contains additional information including the dipole moment of the molecule. The level of detail may be controlled by the PrintLevel entry in the chem.ini file. [Pg.301]

Oxirane (1) and methyloxirane (3) are miscible with water, ethyloxirane is very soluble in water, while compounds such as cyclopentene oxide and higher oxiranes are essentially insoluble (B-73MI50501) (for a discussion of the solubilities of heterocycles, see (63PMH(l)l77)). Other physical properties of heterocycles, such as dipole moments and electrochemical properties, are discussed in various chapters of pmh. The optical activity of chiral oxiranes has been investigated by ab initio molecular orbital methods (8UA1023). [Pg.97]

For most purposes, hydroearbon groups ean be eonsidered to be nonpolar. There are, however, small dipoles associated with C—H bonds and bonds between earbons of different hybridization or substitution pattern. For normal sp earbon, the earbon is found to be slightly negatively charged relative to hydrogen. The electronegativity order for hybridized carbon orbitals is sp > sp > sp. Scheme 1.1 lists the dipole moments of some hydrocarbons and some other organic molecules. [Pg.17]

To understand the origins of dispersion forces, let us consider two Bohr atoms, each of which consists of an electron orbiting around a nucleus comprised of a proton, having a radius ao, often referred to as the first Bohr radius . It is obvious that a Bohr atom has no permanent dipole moment. However, the Bohr atom can be considered to have an instantaneous dipole moment given by... [Pg.172]

The remainder of the optimization output file displays the population analysis, molecular orbitals (if requested with Pop=Reg) and atomic charges and dipole moment for the optimized structure. [Pg.45]

Compare the dipole moment and the electrostatic potential map for the ground state of acetone to those of the n to pistar state of acetone. Which molecule is more polar Rationalize the differences by appealing to the shape of the orbitals (in ground-state acetone) whose electron populations are changed by excitation. [Pg.260]


See other pages where Orbital dipole moment is mentioned: [Pg.8]    [Pg.8]    [Pg.279]    [Pg.8]    [Pg.8]    [Pg.279]    [Pg.1553]    [Pg.57]    [Pg.178]    [Pg.33]    [Pg.137]    [Pg.301]    [Pg.227]    [Pg.520]    [Pg.169]    [Pg.325]    [Pg.33]    [Pg.49]    [Pg.243]    [Pg.525]    [Pg.31]    [Pg.431]    [Pg.162]    [Pg.101]    [Pg.95]    [Pg.250]    [Pg.2]    [Pg.3]    [Pg.176]    [Pg.134]    [Pg.882]    [Pg.753]    [Pg.81]    [Pg.14]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Dipole moments, semiempirical molecular orbital

Dipole moments, semiempirical molecular orbital modeling

Electron orbital dipole moment

Formaldehyde, dipole moment localized orbital

Natural orbital function dipole moment

Orbital magnetic dipole moment

Orbitals orbital moment

© 2024 chempedia.info