Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole moment hydrocarbons

Due to less dipole moment, hydrocarbon solvents such as benzene (b.p. 80"C, 8 = 2.27), toluene (b.p. 111°C, 8 = 2.38), o-xylene (b.p. 144"C, 8 = 2.57), and cyclohexane (b.p. 80.7°C, 8 = 2.02) are unsuitable as they poorly absorb microwave radiations. But the addition of small amount of polar solvents such as water or alcohol to these solvents, can lead to dramatic couphng effects. Hence, ethanol toluene (1 4) mixture can be heated to boihng in few minutes in a microwave oven (Table 2.1). [Pg.26]

All bonds between equal atoms are given zero values. Because of their symmetry, methane and ethane molecules are nonpolar. The principle of bond moments thus requires that the CH3 group moment equal one H—C moment. Hence the substitution of any aliphatic H by CH3 does not alter the dipole moment, and all saturated hydrocarbons have zero moments as long as the tetrahedral angles are maintained. [Pg.328]

The chemistry of propylene is characterized both by the double bond and by the aHyUc hydrogen atoms. Propylene is the smallest stable unsaturated hydrocarbon molecule that exhibits low order symmetry, ie, only reflection along the main plane. This loss of symmetry, which implies the possibiUty of different types of chemical reactions, is also responsible for the existence of the propylene dipole moment of 0.35 D. Carbon atoms 1 and 2 have trigonal planar geometry identical to that of ethylene. Generally, these carbons are not free to rotate, because of the double bond. Carbon atom 3 is tetrahedral, like methane, and is free to rotate. The hydrogen atoms attached to this carbon are aUyflc. [Pg.124]

The dipole moment (A) of a molecule is the first moment of the elec tric charge density of a molecule. Paraffins have dipole moments of zero, while dipole moments of almost all hydrocarbons are small. McClellan lists many dipole moments. The computer method of Dixon and Jurs" is the most useful method for predicting dipole moments. Lyman et al. give other methods of calculation. [Pg.389]

For most purposes, hydroearbon groups ean be eonsidered to be nonpolar. There are, however, small dipoles associated with C—H bonds and bonds between earbons of different hybridization or substitution pattern. For normal sp earbon, the earbon is found to be slightly negatively charged relative to hydrogen. The electronegativity order for hybridized carbon orbitals is sp > sp > sp. Scheme 1.1 lists the dipole moments of some hydrocarbons and some other organic molecules. [Pg.17]

Hydrocarbons normally have very small dipole momen Why (Hint Consider the relationship betwe electronegativity differences and dipole momer established above for hydrogen halides.) Does sing methylene possess a small dipole moment Explain. W1 direction do you expect singlet methylene s dipole point Explain. In what direction does it point ... [Pg.36]

Azulene, an isomer of naphthalene, lias a remarkably large dipole moment for a hydrocarbon (/i = 1.0 D). Explain, using resonance structures. [Pg.541]

Amino acid zwitterions are internal salts and therefore have many of the physical properties associated with salts. They have large dipole moments, are soluble in water but insoluble in hydrocarbons, and are crystalline substances with relatively high melting points. In addition, amino acids are amphiprotic they can react either as acids or as bases, depending on the circumstances. In aqueous acid solution, an amino acid zwitterion is a base that accepts a proton to yield a cation in aqueous base solution, the zwitterion is an add that loses a proton to form an anion. Note that it is the carboxylate, -C02-, that acts as the basic site and accepts a proton in acid solution, and it is the ammonium cation, -NH3+, that acts as the acidic site and donates a proton in base solution. [Pg.1017]

Compounds with high dielectric constants such as water, ethanol and acetonitrile, tend to heat readily. Less polar substances like aromatic and aliphatic hydrocarbons or compounds with no net dipole moment (e. g. carbon dioxide, dioxane, and carbon tetrachloride) and highly ordered crystalline materials, are poorly absorbing. [Pg.39]

A. Weller and K. Zachariasse 157-160) thoroughly investigated this radical-ion reaction, starting from the observation that the fluorescence of aromatic hydrocarbons is quenched very efficiently by electron donors such as N,N diethylaniline which results in a new, red-shifted emission in nonpolar solvents This emission was ascribed to an excited charge-transfer complex 1(ArDD(H )), designated heteroexcimer, with a dipole moment of 10D. In polar solvents, however, quenching of aromatic hydrocarbon fluorescence by diethylaniline is not accompanied by hetero-excimer emission in this case the free radical anions Ar<7> and cations D were formed. [Pg.123]

Apparently 9-phenylfluorenyl is not only a good anion but also a bad cation. The chloride probably shares in some of the resonance stabilization of the anion while the cation does not. Another example of a connection between the resonance of an anion and the properties of a related covalent compound is provided by the hydrocarbon triphenyl-methylcyclopentadiene, which has an unusually high dipole moment although it does not conduct in liquid sulfur dioxide.180... [Pg.80]

In chemistry, several properties such as enthalpy of formation, dipole moments, etc., are analyzed for molecules on the basis of an additivity approximation. The same was applied to Compton profiles by Eisenberger and Marra [14], who measured the Compton profiles of hydrocarbons and extracted bond Compton profiles by a least squares fitting. This also enabled an approximate evaluation of the energy of these systems from the virial theorem. [Pg.61]


See other pages where Dipole moment hydrocarbons is mentioned: [Pg.2420]    [Pg.2494]    [Pg.846]    [Pg.218]    [Pg.21]    [Pg.224]    [Pg.189]    [Pg.66]    [Pg.55]    [Pg.987]    [Pg.471]    [Pg.846]    [Pg.400]    [Pg.304]    [Pg.118]    [Pg.653]    [Pg.756]    [Pg.221]    [Pg.478]    [Pg.278]    [Pg.59]    [Pg.315]    [Pg.193]    [Pg.91]    [Pg.104]    [Pg.297]    [Pg.97]    [Pg.128]    [Pg.345]    [Pg.143]    [Pg.52]    [Pg.79]    [Pg.177]    [Pg.133]    [Pg.25]    [Pg.88]    [Pg.23]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Conjugated hydrocarbons, dipole moments

© 2024 chempedia.info