Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.2- Dioxetanes electron exchange chemiluminescence

Chemical off—on switching of the chemiluminescence of a 1,2-dioxetane (9-benzyhdene-10-methylacridan-l,2-dioxetane [66762-83-2] (9)) was first described in 1980 (33). No chemiluminescence was observed when excess acetic acid was added to (9) but chemiluminescence was recovered when triethylamine was added. The off—on switching was attributed to reversible protonation of the nitrogen lone pair and modulation of chemically induced electron-exchange luminescence (CIEEL). Base-induced decomposition of a 1,2-dioxetane of 2-phen5l-3-(4 -hydroxyphenyl)-l,4-dioxetane (10) by deprotonation of the phenoHc hydroxy group has also been described (34). [Pg.264]

Despite the clear implication of the involvement of intramolecular electron transfer in the chemiluminescence of certain dioxetanes, there have been no clear examples of intermolecular electron exchange luminescence processes with dioxetanes. In a recent note, however, Wilson (1979) reports the observation of catalysis of the chemiluminescence of tetramethoxy-1,2-dioxetane by rubrene and, most surprisingly, by 9,10-dicyanoanthracene. While catalysis by the added fluorescers was not kinetically discernible, a lowering of the activation energy for chemiluminescence was observed. These results were interpreted not in terms of an actual electron transfer with the formation of radical ions, but rather in terms of charge transfer interactions between fluorescer and dioxetane in the collision complex. In any event, these results certainly emphasize the need for caution in considering the fluorescer as a passive energy acceptor in dioxetane chemiluminescence. [Pg.207]

The 1,2-dioxetanes are another important group of chemiluminescent compounds. These compounds are oxidatively cleaved thermally in a concerted fashion to yield two carbonyl moieties, one of which is excited. The mechanism of this cleavage has been described as a chemically initiated electron-exchange... [Pg.471]

This was further elaborated upon by Schuster and co-workers (K21, S23, S24) and by Schaap s group at Wayne State University (S6, S8, SIO, Sll, Z2, Z3). Thus, the observation that some hydroxy-substituted aromatic dioxetanes show high chemiluminescent efficiencies at alkaline pH (phenolic anionic form) led to the formulation of a third mechanism for chemiluminescent decomposition of dioxetanes. This mechanism, known initially as intramolecular electron transfer (Ml9, Z2) and subsequently as chemically initiated electron exchange luminescence, or CIEEL (FI, K20), can be best illustrated by reference to the dioxetane shown in Fig. 37, where the chemiluminescence is triggered by the addition of fluoride ions. [Pg.146]


See other pages where 1.2- Dioxetanes electron exchange chemiluminescence is mentioned: [Pg.189]    [Pg.397]    [Pg.399]    [Pg.415]    [Pg.416]    [Pg.416]    [Pg.191]    [Pg.1182]    [Pg.1182]    [Pg.459]    [Pg.358]    [Pg.459]    [Pg.331]    [Pg.135]    [Pg.477]    [Pg.144]    [Pg.115]    [Pg.68]    [Pg.310]    [Pg.539]   
See also in sourсe #XX -- [ Pg.414 ]




SEARCH



1,2-Dioxetans

1.2- Dioxetane

1.2- dioxetan

Chemiluminescence dioxetanes

Chemiluminescence electron exchange

Electron exchange

Electronic exchanges

© 2024 chempedia.info