Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethyl sulfide, tropospheric sources

Table 8.17 summarizes the rate constants and estimated tropospheric lifetimes of some of these sulfur compounds with respect to reaction with OH or NO-,. The assumed concentrations of these oxidants chosen for the calculations are those characteristic of more remote regions, which are major sources of reduced sulfur compounds such as dimethyl sulfide (DMS). It is seen that OH is expected to be the most important sink for these compounds and that NO, may also be important, for example, for DMS oxidation (see also Chapter 6.J). [Pg.328]

Barnes, I., K. H. Becker, and I. Patroescu, The Tropospheric Oxidation of Dimethyl Sulfide A New Source of Carbonyl Sulfide, Geophys. Res. Lett., 21, 2389-2392 (1994b). [Pg.337]

Another interesting application of MDGC is in the rapid determination of isoprene (the most reactive hydrocarbon species) and dimethyl sulfide (DMS) (the major source of sulfur in the marine troposphere and a precursor to cloud formation) in the atmosphere (16). The detection limits were 5 and 25 ng F1, respectively. [Pg.339]

In the last 150 years the anthropogenic emission of sulfur has increased dramatically, primarily due to combustion processes [1]. In the 1950s anthropogenic emission surpassed natural emission and the atmospheric sulfur cycle is one of the most perturbed biogeochemical cycles [1,2]. The oceans are the largest natural source of atmospheric sulfur emissions, where sulfur is emitted in a reduced form, predominantly as dimethyl sulfide (DMS) and to a much lesser extent carbonyl sulfide (OCS) and carbon disulfide (CS2) [3]. Ocean emitted DMS and CS2 are initially oxidised to OCS, which diffuses through the troposphere into the stratosphere where further oxidation to sulfur dioxide (SO2), sulfur trioxide (SO3) and finally sulfuric acid (H2SO4) occurs [1-4]. [Pg.138]

Dimethyl sulfide (DMS), through its oxidation to sulfate in the troposphere, acts as a source of cloud condensation nuclei, thus potentially influencing the radiative balance of the atmosphere. DMS is formed in sea water through the microbial decomposition of dimethyl sulfonioproprionate (DMSP), a compound believed to act as an osmolyte in certain species of marine phytoplankton. The flux of DMS to the atmosphere is controlled by its concentration in surface sea waters, which is controlled in turn by the rate of its decomposition. Estimates indicate that 7-40% of the total turnover of DMS in the surface waters of the Pacific Ocean is due to the photosensitized destruction of this compound, illustrating the potential importance of this pathway in controlling the flux of DMS to the atmosphere. [Pg.94]

These phenomena are of great significance in environmental chemistry, either owing to the solubilities of air pollutants in water or owing to their ability to migrate from water to the atmosphere. A good example is dimethyl sulfide, which is emitted by oceanic phytoplankton and constitutes the major natural source of sulfur in the troposphere. [Pg.780]


See other pages where Dimethyl sulfide, tropospheric sources is mentioned: [Pg.347]    [Pg.1411]    [Pg.306]    [Pg.32]    [Pg.58]    [Pg.348]   
See also in sourсe #XX -- [ Pg.397 ]




SEARCH



Dimethyl sulfide

Dimethyl sulfide, tropospheric

Troposphere

Tropospheric

© 2024 chempedia.info