Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimensional analysis dimensionless numbers

The functional relation ia equation 53 or 54 cannot be determined by dimensional analysis alone it must be suppHed by experiments. The significance is that the mean-free-path problem is reduced from an original relation involving seven variables to an equation involving only three dimensionless products, a considerable saving ia terms of the number of experiments required ia determining the governing equation. [Pg.110]

Friction Factor and Reynolds Number For a Newtonian fluid in a smooth pipe, dimensional analysis relates the frictional pressure drop per unit length AP/L to the pipe diameter D, density p, and average velocity V through two dimensionless groups, the Fanning friction factor/and the Reynolds number Re. [Pg.635]

Damkdhler (1936) studied the above subjects with the help of dimensional analysis. He concluded from the differential equations, describing chemical reactions in a flow system, that four dimensionless numbers can be derived as criteria for similarity. These four and the Reynolds number are needed to characterize reacting flow systems. He realized that scale-up on this basis can only be achieved by giving up complete similarity. The recognition that these basic dimensionless numbers have general and wider applicability came only in the 1960s. The Damkdhler numbers will be used for the basis of discussion of the subject presented here as follows ... [Pg.278]

Dimensional analysis leads to various dimensionless parameters, wliieli are based on the dimension s mass (M), length (L), and time T). Based on these elements, one ean obtain various independent parameters sueh as density (p), viseosity (/i), speed (A ), diameter ( )), and veloeity (V). The independent parameters lead to forming various dimensionless groups, whieh are used in fluid meehanies of turbomaehines. Reynolds number is the ratio of the inertia forees to the viseous forees... [Pg.126]

The result is a modified Euler number. You can prove to yourself that the pressure drop over the particle can be obtained by accounting for the projected area of the particle through particle size, S, in the denominator. Thus, by application of dimensional analysis to the force balance expression, a relationship between the dimensionless complexes of the Euler and Reynolds numbers, we obtain ... [Pg.293]

The requirement of dimensional consistency places a number of constraints on the form of the functional relation between variables in a problem and forms the basis of the technique of dimensional analysis which enables the variables in a problem to be grouped into the form of dimensionless groups. Since the dimensions of the physical quantities may be expressed in terms of a number of fundamentals, usually mass, length, and time, and sometimes temperature and thermal energy, the requirement of dimensional consistency must be satisfied in respect of each of the fundamentals. Dimensional analysis gives no information about the form of the functions, nor does it provide any means of evaluating numerical proportionality constants. [Pg.12]

It is important to recognise the differences between scalar quantities which have a magnitude but no direction, and vector quantities which have both magnitude and direction. Most length terms are vectors in the Cartesian system and may have components in the X, Y and Z directions which may be expressed as Lx, Ly and Lz. There must be dimensional consistency in all equations and relationships between physical quantities, and there is therefore the possibility of using all three length dimensions as fundamentals in dimensional analysis. This means that the number of dimensionless groups which are formed will be less. [Pg.20]

A number of important dimensionless groups have been arrived at by dimensional analysis and by other means. The numerical value of such a dimensionless group for a given case is independent of the units chosen for the primary quantities as long as consistent units are used within that group. The units used in one group need not be consistent with those used in another. [Pg.327]

It must be emphasized that dimensional analysis is used to find the minimum number of dimensionless groups of all the variables known to be relevant to the description of a... [Pg.327]

In the Rayleigh method of carrying out a dimensional analysis the dependent variable is assumed to be proportional to the product of the independent variables raised to different powers. By equating dimensions, the number of independent dimensionless groups and one set of their possible forms can be obtained. By way of illustration two examples may be considered. [Pg.328]

We have stated that dimensional analysis results in an appropriate set of groups that can be used to describe the behavior of a system, but it does not tell how these groups are related. In fact, dimensional analysis does not result in any numbers related to the groups (except for exponents on the variables). The relationship between the groups that represents the system behavior must be determined by either theoretical analysis or experimentation. Even when theoretical results are possible, however, it is often necessary to obtain data to evaluate or confirm the adequacy of the theory. Because relationships between dimensionless variables are independent of... [Pg.30]

It should be noted that a dimensional analysis of this problem results in one more dimensionless group than for the Newtonian fluid, because there is one more fluid rheological property (e.g., m and n for the power law fluid, versus fi for the Newtonian fluid). However, the parameter n is itself dimensionless and thus constitutes the additional dimensionless group, even though it is integrated into the Reynolds number as it has been defined. Note also that because n is an empirical parameter and can take on any value, the units in expressions for power law fluids can be complex. Thus, the calculations are simplified if a scientific system of dimensional units is used (e.g., SI or cgs), which avoids the necessity of introducing the conversion factor gc. In fact, the evaluation of most dimensionless groups is usually simplified by the use of such units. [Pg.165]

Dimensional analysis shows that, in the treatment of natural convection, the dimensionless Grashof number, which represents the ratio of buoyancy to viscous forces, is often important. The definition of the Grashof number, Gr, is... [Pg.29]

Conventional dimensional analysis uses single length and time scales to obtain dimensionless groups. In the first section, a new kind of dimensional analysis is developed which employs two kinds of such scales, the microscopic (molecular) scale and the macroscopic scale. This provides some physical significance to the exponent of the Reynolds number in the expression of the Sherwood number, as well as some bounds of this exponent for both laminar and turbulent motion. [Pg.11]

Conventional dimensional analysis employs single length and time scales. Correlations are thus obtained for the mass or heat transfer coefficients in terms of the minimum number of independent dimensionless groups these can generally be represented by power functions such as... [Pg.12]

Since the number of quantities is five and the number of dimensions involved is three, two dimensionless groups can be formed and dimensional analysis leads to... [Pg.82]

Just as process translation or scaling-up is facilitated by defining similarity in terms of dimensionless ratios of measurements, forces, or velocities, the technique of dimensional analysis per se permits the definition of appropriate composite dimensionless numbers whose numeric values are process-specific. Dimensionless quantities can be pure numbers, ratios, or multiplicative combinations of variables with no net units. [Pg.117]

Dimensional analysis is a method for producing dimensionless numbers that completely characterize the process. The analysis can be applied even when the equations governing the process are not known. According to the theory of models, two processes may be considered completely similar if they take place in similar geometrical space and if all the dimensionless numbers necessary to describe the process have the same numerical value (2). [Pg.556]

Engineers commonly use dimensionless ratios such as the Reynolds number and the lift coefficient to help understand complex experimental data, organize equations and model building, and relate model testing in a wind tunnel to that of a prototype flight. This kind of analysis is called dimensional analysis because it uses the dimensional nature of important variables to derive dimensionless parameters that determine the scaling properties of a physical system. [Pg.182]

A dimensional analysis of the problem of film flow (F7) has shown that in general the properties of a film flow may depend on the Reynolds, Weber, and Froude numbers of the flow, a dimensionless shear at the free surface of the film, and, for wavy flows, a Strouhal number formed from the frequency of the surface waves, and various geometrical ratios, e.g., the ratios of the wave amplitude and length to the mean film thickness. [Pg.154]

Dimensional analysis, often referred to as the II-theorem is based on the fact that every system that is governed by m physical quantities can be reduced to a set of m - n mutually independent dimensionless groups, where n is the number of basic dimensions that are present in the physical quantities. The II-theorem was introduced by Buckingham [1] in 1914 and is therefore known as the Buckingham II-theorem. The II-theorem is a procedure to determine dimensionless numbers from a list of variables or physical quantities that are related to a specific problem. This is best illustrated by an example problem. [Pg.172]

Tables 4.2 to 4.4 list several dimensionless numbers that are used in various areas of engineering. This list can be helpful in performing a dimensional analysis, to help interpret results that are sometimes difficult to discern from the variety of dimensionless numbers that can result during such an undertaking. Tables 4.2 to 4.4 list several dimensionless numbers that are used in various areas of engineering. This list can be helpful in performing a dimensional analysis, to help interpret results that are sometimes difficult to discern from the variety of dimensionless numbers that can result during such an undertaking.
A dimensional analysis of the system will result in four dimensionless numbers, Reynolds number, Froude number and geometric dimensionless parameters given by,... [Pg.200]


See other pages where Dimensional analysis dimensionless numbers is mentioned: [Pg.97]    [Pg.106]    [Pg.106]    [Pg.517]    [Pg.103]    [Pg.106]    [Pg.7]    [Pg.12]    [Pg.12]    [Pg.65]    [Pg.505]    [Pg.24]    [Pg.44]    [Pg.51]    [Pg.169]    [Pg.428]    [Pg.182]    [Pg.12]    [Pg.117]    [Pg.525]    [Pg.92]    [Pg.6]    [Pg.83]    [Pg.171]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Analyses, numbers

Dimensional analysis

Dimensionless

Dimensionless analysis

Similarity Hypothesis, Dimensional Analysis, and Dimensionless Numbers

© 2024 chempedia.info