Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusivity principal diffusivities

Despite the fact Chat there are no analogs of void fraction or pore size in the model, by varying the proportion of dust particles dispersed among the gas molecules it is possible to move from a situation where most momentum transfer occurs in collisions between pairs of gas molecules, Co one where the principal momentum transfer is between gas molecules and the dust. Thus one might hope to obtain at least a physically reasonable form for the flux relations, over the whole range from bulk diffusion to Knudsen streaming. [Pg.19]

Whereas the emission spectrum of the hydrogen atom shows only one series, the Balmer series (see Figure 1.1), in the visible region the alkali metals show at least three. The spectra can be excited in a discharge lamp containing a sample of the appropriate metal. One series was called the principal series because it could also be observed in absorption through a column of the vapour. The other two were called sharp and diffuse because of their general appearance. A part of a fourth series, called the fundamental series, can sometimes be observed. [Pg.213]

These selection rules lead to the sharp, principal, diffuse and fundamental series, shown in Figures 7.5 and 7.6, in which the promoted electron is in an x, p, d and / orbital, respectively. Indeed, these rather curious orbital symbols originate from the first letters of the corresponding series observed in the spectrum. [Pg.213]

A key factor determining the performance of ultrafiltration membranes is concentration polarization due to macromolecules retained at the membrane surface. In ultrafiltration, both solvent and macromolecules are carried to the membrane surface by the solution permeating the membrane. Because only the solvent and small solutes permeate the membrane, macromolecular solutes accumulate at the membrane surface. The rate at which the rejected macromolecules can diffuse away from the membrane surface into the bulk solution is relatively low. This means that the concentration of macromolecules at the surface can increase to the point that a gel layer of rejected macromolecules forms on the membrane surface, becoming a secondary barrier to flow through the membrane. In most ultrafiltration appHcations this secondary barrier is the principal resistance to flow through the membrane and dominates the membrane performance. [Pg.78]

AletabolicFunctions. The chlorides are essential in the homeostatic processes maintaining fluid volume, osmotic pressure, and acid—base equihbria (11). Most chloride is present in body fluids a Htde is in bone salts. Chloride is the principal anion accompanying Na" in the extracellular fluid. Less than 15 wt % of the CF is associated with K" in the intracellular fluid. Chloride passively and freely diffuses between intra- and extracellular fluids through the cell membrane. If chloride diffuses freely, but most CF remains in the extracellular fluid, it follows that there is some restriction on the diffusion of phosphate. As of this writing (ca 1994), the nature of this restriction has not been conclusively estabUshed. There may be a transport device (60), or cell membranes may not be very permeable to phosphate ions minimising the loss of HPO from intracellular fluid (61). [Pg.380]

Pulse radiolysis results (74) have led other workers to conclude that adsorbed OH radicals (surface trapped holes) are the principal oxidants, whereas free hydroxyl radicals probably play a minor role, if any. Because the OH radical reacts with HO2 at a diffusion controlled rate, the reverse reaction, that is desorption of OH to the solution, seems highly unlikely. The surface trapped hole, as defined by equation 18, accounts for most of the observations which had previously led to the suggestion of OH radical oxidation. The formation of H2O2 and the observations of hydroxylated intermediate products could all occur via... [Pg.405]

Equation 7 shows that as AP — oo, P — 1. The principal advantage of the solution—diffusion (SD) model is that only two parameters are needed to characterize the membrane system. As a result, this model has been widely appHed to both inorganic salt and organic solute systems. However, it has been indicated (26) that the SD model is limited to membranes having low water content. Also, for many RO membranes and solutes, particularly organics, the SD model does not adequately describe water or solute flux (27). Possible causes for these deviations include imperfections in the membrane barrier layer, pore flow (convection effects), and solute—solvent—membrane interactions. [Pg.147]

Chromizing. The other principal method of obtaining a chromium-rich surface on steel is by chromizing (29). The material to be treated is embedded in a mixture of ferrochromium powder, a chromium halide, alumina, and sometimes NH Cl. The chromium is diffused in by a furnace... [Pg.120]

Fluorine. Fluorine is the most reactive product of all electrochemical processes (63). It was first prepared in 1886, but important quantities of fluorine were not produced until the early 1940s. Fluorine was required for the production of uranium hexafluoride [7783-81 -5] UF, necessary for the enrichment of U (see DIFFUSION SEPARATION METHODS). The Manhattan Project in the United States and the Tube Alloy project in England contained parallel developments of electrolytic cells for fluorine production (63). The principal use of fluorine continues to be the production of UF from UF. ... [Pg.78]

This section describes equipment for heat transfer to or from solids by the indirect mode. Such equipment is so constructed that the solids load (burden) is separated from the heat-carrier medium by a wall the two phases are never in direct contact. Heat transfer is by conduction based on diffusion laws. Equipment in which the phases are in direct contact is covered in other sections of this Handbook, principally in Sec. 20. [Pg.1088]

For turbines at Reynolds numbers less than 100, toroidal stagnant zones exist above and below the turbine periphery. Interchange of hq-uid between these regions and the rest of the vessel is principally by molecular diffusion. [Pg.1630]

Regardless of the source, the resultant oil slicks are essentially surface phenomena that are affected by several transportation and transformation processes. With respect to transportation, the principal agent for the movement of slicks is the wind, but length scales are important. Whereas small (i.e. relative to the slick size) weather systems, such as thunderstorms, tend to disperse the slick, cyclonic systems can move the slick essentially intact. Advection of a slick is also affected by waves and currents. To a more limited extent, diffusion can also act to transport the oil. [Pg.83]

Processes in which solids play a rate-determining role have as their principal kinetic factors the existence of chemical potential gradients, and diffusive mass and heat transfer in materials with rigid structures. The atomic structures of the phases involved in any process and their thermodynamic stabilities have important effects on drese properties, since they result from tire distribution of electrons and ions during tire process. In metallic phases it is the diffusive and thermal capacities of the ion cores which are prevalent, the electrons determining the thermal conduction, whereas it is the ionic charge and the valencies of tire species involved in iron-metallic systems which are important in the diffusive and the electronic behaviour of these solids, especially in the case of variable valency ions, while the ions determine the rate of heat conduction. [Pg.148]


See other pages where Diffusivity principal diffusivities is mentioned: [Pg.2414]    [Pg.171]    [Pg.186]    [Pg.255]    [Pg.163]    [Pg.144]    [Pg.284]    [Pg.432]    [Pg.47]    [Pg.474]    [Pg.346]    [Pg.400]    [Pg.196]    [Pg.259]    [Pg.517]    [Pg.327]    [Pg.490]    [Pg.295]    [Pg.536]    [Pg.24]    [Pg.260]    [Pg.48]    [Pg.511]    [Pg.527]    [Pg.232]    [Pg.297]    [Pg.511]    [Pg.335]    [Pg.496]    [Pg.532]    [Pg.226]    [Pg.243]    [Pg.250]    [Pg.103]    [Pg.1228]    [Pg.1590]    [Pg.2196]    [Pg.20]   
See also in sourсe #XX -- [ Pg.227 , Pg.228 , Pg.229 , Pg.230 ]




SEARCH



Principal diffusivity

Pump, diffusion principal

© 2024 chempedia.info