Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion empirical calculation

In contrast to liquid water, a detailed mechanistic understanding of the physical and chemical processes occurring in the evolution of the radiation chemical track in hydrocarbons is not available except on the most empirical level. Stochastic diffusion-kinetic calculations for low permittivity media have been limited to simple studies of cation-electron recombination in aliphatic hydrocarbons employing idealized track structures [56-58], and simplistic deterministic calculations have been used to model the radical and excited state chemistry [102]. While these calculations have been able to reproduce measured free ion yields and end product yields, respectively, the lack of a detailed mechanistic model makes it very difficult... [Pg.99]

To solve the problem put by the Hartree-Fock method with ab initio qrproximation (non-empirical calculations) was chosen. All calculations have been done with the assistance of Gaussian 98/A7 software and use the extended valence-splitting basis, which included diffusive and polarized d- and p-functions — 6-31G(d,p). The correlation amendments were performed with use of Density Functional Theory (DFT) in B3LYP approximation. [Pg.643]

Two basic methods were utilized. First, hand calculations were done with bare reactor theory, using the empirical fast nonleal e probaUlity formula developed by Trubey, Moran and Weinberg. Alsio, two versions of multigroup diffusion theory calculation were employed the Los Alamos FIRE code and the General Motors GM-GNU H code. ... [Pg.17]

Diffusion Flames in the Transition Region. As the velocity of the fuel jet increases in the laminar to turbulent transition region, an instabihty develops at the top of the flame and spreads down to its base. This is caused by the shear forces at the boundaries of the fuel jet. The flame length in the transition region is usually calculated by means of empirical formulas of the form (eq. 13) where I = length of the flame, m r = radius of the fuel jet, m v = fuel flow velocity, m/s and and are empirical constants. [Pg.519]

One of the calculation results for the bulk copolyroerization of methyl methacrylate and ethylene glycol dimethacrylate at 70 C is shown in Figure 4. Parameters used for these calculations are shown in Table 1. An empirical correlation of kinetic parameters which accounts for diffusion controlled reactions was estimated from the time-conversion curve which is shown in Figure 5. This kind of correlation is necessary even when one uses statistical methods after Flory and others in order to evaluate the primary chain length drift. [Pg.251]

Assuming that the orifice is disk-shaped, one can calculate the steady-state diffusion-limiting current to a pipette from Eq. (1). However, current values about three times higher than expected from Eq. (1) were measured for interfacial IT [18] and ET [5]. The following empirical equation for the limiting current at a pipette electrode was proposed [18bj ... [Pg.384]

The basic biofilm model149,150 idealizes a biofilm as a homogeneous matrix of bacteria and the extracellular polymers that bind the bacteria together and to the surface. A Monod equation describes substrate use molecular diffusion within the biofilm is described by Fick s second law and mass transfer from the solution to the biofilm surface is modeled with a solute-diffusion layer. Six kinetic parameters (several of which can be estimated from theoretical considerations and others of which must be derived empirically) and the biofilm thickness must be known to calculate the movement of substrate into the biofilm. [Pg.833]

The theory on the level of the electrode and on the electrochemical cell is sufficiently advanced [4-7]. In this connection, it is necessary to mention the works of J.Newman and R.White s group [8-12], In the majority of publications, the macroscopical approach is used. The authors take into account the transport process and material balance within the system in a proper way. The analysis of the flows in the porous matrix or in the cell takes generally into consideration the diffusion, migration and convection processes. While computing transport processes in the concentrated electrolytes the Stefan-Maxwell equations are used. To calculate electron transfer in a solid phase the Ohm s law in its differential form is used. The electrochemical transformations within the electrodes are described by the Batler-Volmer equation. The internal surface of the electrode, where electrochemical process runs, is frequently presented as a certain function of the porosity or as a certain state of the reagents transformation. To describe this function, various modeling or empirical equations are offered, and they... [Pg.462]

Peterson used the skill score to evaluate the performance of his empirical statistical model based on orthogonal functions. The skill score equals 1.0 when all calculated and observed concentrations agree, but 0 when the number of correctly predicted results equals that expected by chance occurrences. The statistical technique had a skill score of 0.304. An 89-day, 40-station set of the data was used to check a Gaussian diffusion model, and this technique gave the diffusion model a skill score of only 0.15. (Recall that the statistical empirical model was used for 24-h averaged sulfur dioxide concentrations at 40 sites in St. Louis for the winder of 1964-1965.)... [Pg.225]

The critical input parameters are then (1) the grain size, which should be known for each case, (2) the Aci temperature which is calculated from thermodynamics, (3) the effective diffusion activation energy, Qea, and (4) the empirical constants aj for each element. Qea and aj were determined by empirically fitting curves derived using Eq. (11.12) to experimentally observed TTT curves, and the final formula for calculating r was given as... [Pg.442]

If the quotient exceeds 0.7, the situation suggests intrathecal synthesis of IgG. However, this formula is largely empirical and is not mathematically sound. Since the end of the 1970s, numerous more complex equations have been published for the calculation of intrathecal synthesis of IgG (as well as IgM and IgA) that take into account the parameters of diffusion, depending on the dimensions of the molecule. Their description exceeds the scope of this review. [Pg.9]

The diffusion behavior of components that are not the principal equilibriumdetermining component is difficult to model because of multicomponent effect. Many of them may show uphill diffusion (Zhang et al., 1989). To calculate the interface-melt composition using full thermod3mamic and kinetic treatment and to treat diffusion of all components, it is necessary to use a multicomponent diffusion matrix (Liang, 1999). The effective binary treatment is useful in the empirical estimation of the dissolution distance using interface-melt composition and melt diffusivity, but cannot deal with multicomponent effect and components that show uphill diffusion. [Pg.386]

The surface tension is found from an empirical formula and is a function of temperature (determined in the thermochemical submodel). The surrounding pressure P is determined in the resin flow or compaction submodels. The pressure within the void is determined by the partial pressures of the water vapor and air within the void. The mass of water vapor within the void changes during processing and can be described by Fickian diffusion across the void-composite interface [29], Once the mass of vapor inside the void and the pressure at the location are known, the change in void size can readily be calculated from Equation 13.19. Changes in void size are halted when the resin has solidified. [Pg.407]


See other pages where Diffusion empirical calculation is mentioned: [Pg.169]    [Pg.130]    [Pg.97]    [Pg.75]    [Pg.3125]    [Pg.212]    [Pg.75]    [Pg.384]    [Pg.588]    [Pg.935]    [Pg.96]    [Pg.72]    [Pg.120]    [Pg.7]    [Pg.237]    [Pg.227]    [Pg.18]    [Pg.123]    [Pg.395]    [Pg.67]    [Pg.604]    [Pg.79]    [Pg.953]    [Pg.65]    [Pg.212]    [Pg.214]    [Pg.459]    [Pg.522]    [Pg.180]    [Pg.35]    [Pg.32]    [Pg.57]    [Pg.284]    [Pg.399]    [Pg.91]    [Pg.455]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Diffusion calculations

Diffusivities calculation

© 2024 chempedia.info