Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion effects experimental verification

Carbon-13 rotating-frame relaxation rate measurements are used to elucidate the mechanism of gas transport in glassy polymers. The nmr relaxation measurements show that antiplasticization-plasticization of a glassy polymer by a low molecular weight additive effects the cooperative main-chain motions of the polymer. The correlation of the diffusion coefficients of gases with the main-chain motions in the polymer-additive blends shows that the diffusion of gases in polymers is controlled by the cooperative motions, thus providing experimental verification of the molecular theory of diffusion. Carbon-13 nmr relaxation... [Pg.94]

This methods depends on the implicit assumption that the uptake rate is controlled entirely by intracrystalline diffusion in an isothermal system, with all other resistances to either mass or heat transfer negligible. This is a valid approximation if diffusion is sufficiently slow or if the zeolite crystals are sufficiently large but the dominance of intracrystalline diffusional resistance should not be assumed without experimental verification. In many practical systems, particularly with small commercial zeolite crystals, the external heat and mass transfer resistances are in fact dominant. A detailed discussion of such effects has been given by Lee and Ruthven(5-7). [Pg.346]

Another dynamic factor affecting the rate of diffusion transfer, mentioned long ago by Gibbs [9], is the elasticity of the surfactant monolayers which decreases the capillary pressure in small bubbles during their compression and increases it in large bubbles during their expansion. This effect is most pronounced in bubbles whose adsorption layers contain insoluble surfactants. Analysis of the influence of this factor on diffusion transfer has been reported in [486], However, no experimental verification has been performed so far. [Pg.290]

The theory of rotation effects on prolate luminescent molecules in solution and its experimental verification have been developed and compared. Generalized diffusion equations for the rotational motion of an asymmetric rigid motor have been used to given an expression for steady-state fluorescence depolarization. " The radiationless transition from the first excited singlet state of Eosin has been measured by optoacoustic relaxation, and the absolute fluorescence quantum yields of organic dyes in poly(vinyl alcohol) have also been measured by the photoacoustic method. The accuracy of the method has been discussed in the latter paper. Actinometry in flash photolysis experiments has been assisted by new measurements on the extinction coefficient of triplet benzophenone. Matrix-isolation fluorescence spectrometry has been used to detect polycyclic aromatic hydrocarbons from gas chromatography. ... [Pg.6]

Our analyses in Sections 11 and III highlight some of the novel issues arising from the interplay between thermal fluctuations and diffusion-limited reactions in complex fluid media—an issue unaddressed heretofore in the literature. Most of the results unearthed herein lend themselves to experimental verification. For future work, it will be of interest to study the effects arising from relaxing the assumptions invoked in this study (see the preceding section). [Pg.149]

Here, we have also assumed that the particles do not interact before they are in contact and all collisions lead to doublet formation. Moreover, hydrodynamic interactions have been neglected. An experimental verification of this formula showed, not unexpectedly, deviations. The coagulation was slower than that predicted by the rate constant given in equation (1.31). Derjaguin, in 1966, proposed the reason for this was that the particles interact hydrodynamically when they were sufficiently close to each other. The dispersion medium has to be removed from the space between the particles when they approach one another and the motion of the particles is retarded. The effect is in many cases quite large, i.e. about a factor of 2. This can be expressed as a reduction in the diffusion coefficient. Honig and co-workers have derived an approximate equation for how the diffusion coefficient D(H) varies with the interparticle surface-to-surface distance H. The expression is as follows ... [Pg.18]

Experimentally determined effective transport properties of porous bodies, e.g., effective diffusivity and permeability, can be compared with the respective effective transport properties of reconstructed porous media. Such a comparison was found to be satisfactory in the case of sandstones or other materials with relatively narrow pore size distribution (Bekri et al., 1995 Liang et al., 2000b Yeong and Torquato, 1998b). Critical verification studies of effective transport properties estimated by the concept of reconstructed porous media for porous catalysts with a broad pore size distribution and similar materials are scarce (Mourzenko et al., 2001). Let us employ the sample of the porous... [Pg.175]


See other pages where Diffusion effects experimental verification is mentioned: [Pg.518]    [Pg.379]    [Pg.244]    [Pg.113]    [Pg.100]    [Pg.154]    [Pg.13]    [Pg.88]    [Pg.134]    [Pg.4]    [Pg.136]    [Pg.104]    [Pg.346]    [Pg.219]    [Pg.42]    [Pg.12]    [Pg.62]    [Pg.48]    [Pg.168]    [Pg.61]    [Pg.521]    [Pg.126]   
See also in sourсe #XX -- [ Pg.169 , Pg.170 ]




SEARCH



Diffusion effective

Diffusion effects diffusivity

Effective diffusivities

Effective diffusivity

Experimental diffusion

Experimental verification

Experimentation, effective diffusivity

Experimenter effects

Verification

© 2024 chempedia.info