Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion, coefficients volume

In chemical kinetics the concept of the order of a reaction forms the basis of a kinematics which constitutes a frame for most of the molecular theories of chemical reactions. The fundamental magnitudes of this kinematics are the concentrations and the specific rate constants. In simple cases only the time enters as an independent variable, whereas in a diffusion process both time and space are involved. Diffusion processes are generally described in terms of diffusion coefficients, volume concentrations and thermodynamic potential or activity factors. Partial volume factors and friction coefficients associated with the components of the diffusing mixture are also essential in the description. A feature of the macro-dynamical theory is that it covers any region of concentration. Especially simple equations are connected with the differential diffusion process (diffusion with small concentration differences), for which the different coefficients or factors mentioned above are practically constant. [Pg.291]

Otlier expressions for tire diffusion coefficient are based on tire concept of free volume [57], i.e. tire amount of volume in tire sample tliat is not occupied by tire polymer molecules. Computer simulations have also been used to quantify tire mobility of small molecules in polymers [58]. In a first approach, tire partition functions of tire ground... [Pg.2536]

Cg = the concentration of the saturated solution in contact with the particles, D = a diffusion coefficient (approximated by the Hquid-phase diffusivity), M = the mass of solute transferred in time t, and S = the effective thickness of the liquid film surrounding the particles. For a batch process where the total volume H of solution is assumed to remain constant, dM = V dc and... [Pg.87]

Fig. 37. Diffusion coefficient as a function of molar volume for a variety of permeants in natural mbber and in poly(vinyl chloride) (PVC) (81—83). Fig. 37. Diffusion coefficient as a function of molar volume for a variety of permeants in natural mbber and in poly(vinyl chloride) (PVC) (81—83).
Electrically assisted transdermal dmg deflvery, ie, electrotransport or iontophoresis, involves the three key transport processes of passive diffusion, electromigration, and electro osmosis. In passive diffusion, which plays a relatively small role in the transport of ionic compounds, the permeation rate of a compound is deterrnined by its diffusion coefficient and the concentration gradient. Electromigration is the transport of electrically charged ions in an electrical field, that is, the movement of anions and cations toward the anode and cathode, respectively. Electro osmosis is the volume flow of solvent through an electrically charged membrane or tissue in the presence of an appHed electrical field. As the solvent moves, it carries dissolved solutes. [Pg.145]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

Diffiusion Coefficient. The method of Reference 237 has been recommended for many low pressure binary gases (238). Other methods use solvent and solute parachors to calculate diffusion coefficients of dissolved organic gases in Hquid solvents (239,240). Molar volume and viscosity are also required and may be estimated by the methods previously discussed. Caution should be exercised because errors are multiphcative by these methods. [Pg.254]

Multicomponent Mixtures No simple, practical estimation methods have been developed for predicting multicomponent hquid-diffusion coefficients. Several theories have been developed, but the necessity for extensive activity data, pure component and mixture volumes, mixture viscosity data, and tracer and binaiy diffusion coefficients have significantly limited the utihty of the theories (see Reid et al.). [Pg.600]

Here / is the number of ink molecules diffusing down the concentration gradient per second per unit area it is called the flux of molecules (Fig. 18.3). The quantity c is the concentration of ink molecules in the water, defined as the number of ink molecules per unit volume of the ink-water solution and D is the diffusion coefficient for ink in water - it has units of m s . ... [Pg.180]

Similar considerations apply to best volume flow rates for samples of different molar mass. For high molar mass samples, flow rates should be reduced to avoid shearing the macromolecule in the column. Moreover, a reduced flow rate is necessary because the diffusion coefficients of large molecules will get pretty small. This means that the macromolecule will pass by a pore in the packing material without having the time to enter it, if the linear flow rate is too high. [Pg.283]

Loading capacities in size exclusion chromatography are very low because all separation occurs within the liquid volume of the column. The small diffusion coefficients of macromolecules also contribute to bandspreading when loads are increased. The mass loading capacities for ovalbumin (MW 45,000) on various sizes of columns can be seen in Table 10.5. The maximum volume that can be injected in size exclusion chromatography before bandspreading occurs is about 2% of the liquid column volume. The maximum injection volumes for columns of different dimensions can also be seen in Table 10.5. [Pg.318]

The description of mass transfer requires a separation of the contributions of convection and mutual diffusion. While convection means macroscopic motion of complete volume elements, mutual diffusion denotes the macroscopically perceptible relative motion of the individual particles due to concentration gradients. Hence, when measuring mutual diffusion coefficients, one has to avoid convection in the system or, at least has to take it into consideration. [Pg.162]


See other pages where Diffusion, coefficients volume is mentioned: [Pg.2536]    [Pg.643]    [Pg.64]    [Pg.84]    [Pg.501]    [Pg.133]    [Pg.486]    [Pg.92]    [Pg.596]    [Pg.596]    [Pg.597]    [Pg.2000]    [Pg.2002]    [Pg.161]    [Pg.181]    [Pg.183]    [Pg.200]    [Pg.204]    [Pg.209]    [Pg.215]    [Pg.219]    [Pg.233]    [Pg.234]    [Pg.234]    [Pg.246]    [Pg.251]    [Pg.254]    [Pg.255]    [Pg.291]    [Pg.295]    [Pg.303]    [Pg.113]    [Pg.680]    [Pg.319]    [Pg.489]    [Pg.606]    [Pg.164]    [Pg.581]    [Pg.189]   
See also in sourсe #XX -- [ Pg.311 , Pg.333 ]




SEARCH



Diffusion coefficient volume-fixed

Effective diffusion coefficient volume

Thermodynamic diffusion coefficient fractional free volume

Volume fraction dependence self-diffusion coefficients

© 2024 chempedia.info