Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion coefficient, mixtur

How efficient is the described representation of the ArCC>2 potential To answer this question the above PES along with a few empirical potentials have been used to derive a number of properties, such as the ground vibrational state and dissociation energy of the complex, ground state rotational constants, the mean square torque, the interaction second virial coefficients, diffusion coefficients, mixture viscosities, thermal conductivities, the NMR relaxation cross sections, and many others [47]. Overall, the ab initio surface provided very good simulations of the empirical estimates of all studied properties. The only parameters that were not accurately reproduced were the interaction second virial coefficients. It is important that its performance proved comparable to the best empirical surface 3A of Bohac, Marshall and Miller [48], This fact must be greeted with satisfaction since no empirical adjustments were performed for the ab initio surface. [Pg.684]

For a binary mixture of two components A and B in the gas phase, the mutual diffusion coefficient such as defined in 4.3.2.3, does not depend on composition. It can be calculated by the Fuller (1966) method ... [Pg.146]

As a particular case of this result, it follows that the stoichiometric relations are always satisfied in a binary mixture at the limit of bulk diffusion control and Infinite permeability (at least to the extent that the dusty gas equations are valid), since then all the binary pair bulk diffusion coefficients are necessarily equal, as there is only one of them. This special case was discussed by Hite and Jackson [77], and the reasoning set out here is a straightforward generalization of their treatment. [Pg.149]

Umesi, N. O., Coirelating Diffusion Coefficients in Dilute Liquid Mixtures, M.S. Thesis, Penn State University, University Park, PA, 1980. van Velzen, D., R. L. Cardozo, and H. Langenkamp, Ind. Eng. Chem. Fun-dam., 11 (1972) 20. [Pg.384]

In the late 1800s, the development of the kinetic theory of gases led to a method for calculating mmticomponent gas diffusion (e.g., the flux of each species in a mixture). The methods were developed simnlta-neonsly by Stefan and Maxwell. The problem is to determine the diffusion coefficient D, . The Stefan-Maxwell equations are simpler in principle since they employ binary diffnsivities ... [Pg.593]

Cussler studied diffusion in concentrated associating systems and has shown that, in associating systems, it is the size of diffusing clusters rather than diffusing solutes that controls diffusion. is a reference diffusion coefficient discussed hereafter is the activity of component A and iC is a constant. By assuming that could be predicted by Eq. (5-223) with P = 1, iC was found to be equal to 0.5 based on five binaiy systems and vahdated with a sixth binaiy mixture. The limitations of Eq. (5-225) using and K defined previously have not been explored, so caution is warranted. Gurkan showed that K shoiild actually be closer to 0.3 (rather than 0.5) and discussed the overall results. [Pg.599]

Multicomponent Mixtures No simple, practical estimation methods have been developed for predicting multicomponent hquid-diffusion coefficients. Several theories have been developed, but the necessity for extensive activity data, pure component and mixture volumes, mixture viscosity data, and tracer and binaiy diffusion coefficients have significantly limited the utihty of the theories (see Reid et al.). [Pg.600]

The generalized Stefan-Maxwell equations using binary diffusion coefficients are not easily applicable to hquids since the coefficients are so dependent on conditions. That is, in hquids, each Dy can be strongly composition dependent in binary mixtures and, moreover, the binaiy is strongly affected in a multicomponent mixture. Thus, the convenience of writing multicomponent flux equations in terms of binary coefficients is lost. Conversely, they apply to gas mixtures because each is practically independent of composition by itself and in a multicomponent mixture (see Taylor and Krishna for details). [Pg.600]

In a binary gas mixture, the diffusion coefficient of the species i at a mole fraction jc, widr respect to tlrat of the species j is given after evaluating the constants by tire equation... [Pg.109]

FIQ. 3 Diffusion coefficient of benzene molecules in benzene-polystyrene mixtures normalized by the diffusion coefficient of neat benzene molecular dynamics results, NMR measurements and prediction by the Mackie-Meares model [26]. [Pg.491]

From the molecular point of view, the self-diffusion coefficient is more important than the mutual diffusion coefficient, because the different self-diffusion coefficients give a more detailed description of the single chemical species than the mutual diffusion coefficient, which characterizes the system with only one coefficient. Owing to its cooperative nature, a theoretical description of mutual diffusion is expected to be more complex than one of self-diffusion [5]. Besides that, self-diffusion measurements are determinable in pure ionic liquids, while mutual diffusion measurements require mixtures of liquids. [Pg.164]

Microprobe studies of pack-chromised iron (Cr powder, alumina, CrCl, mixture) shows that the surface Cr concentration builds up with time to 95% in 20 h at 1 300 K ", and that the diffusion coefficient for Cr in a-phase is very concentration dependent. The growth of carbides during pack-chromising and during gas-vanadising have been studied. [Pg.414]

The dimensionless parameter Dpc / is called the Lewis number, which is the ratio of the diffusion coefficient of a gas through the mixture divided by the thermal diffusion coefficient of the gas mixture. [Pg.105]

According to Maxwell s law, the partial pressure gradient in a gas which is diffusing in a two-component mixture is proportional to the product of the molar concentrations of the two components multiplied by its mass transfer velocity relative to that of the second component. Show how this relationship can be adapted to apply to the absorption of a soluble gas from a multicomponent mixture in which the other gases are insoluble and obtain an effective diffusivity for the multicomponent system in terms of the binary diffusion coefficients. [Pg.860]

Specific heat of each species is assumed to be the function of temperature by using JANAF [7]. Transport coefficients for the mixture gas such as viscosity, thermal conductivity, and diffusion coefficient are calculated by using the approximation formula based on the kinetic theory of gas [8]. As for the initial condition, a mixture is quiescent and its temperature and pressure are 300 K and 0.1 MPa, respectively. [Pg.27]

The task of the problem-independent chemistry software is to make evaluating the terms in Equations (6-10) as straightforward as possible. In this case subroutine calls to the Chemkin software are made to return values of p, Cp, and the and hk vectors. Also, subroutine calls are made to a Transport package to return the ordinary multicomponent diffusion matrices Dkj, the mixture viscosities p, the thermal conductivities A, and the thermal diffusion coefficients D. Once this is done, finite difference representations of the equations are evaluated, and the residuals returned to the boundary value solver. [Pg.348]

Fig. 2.7.5 Two-dimensional D—T2 map for Berea sandstone saturated with a mixture of water and mineral oil. Figures on the top and the right-hand side show the projections of f(D, T2) along the diffusion and relaxation dimensions, respectively. In these projections, the contributions from oil and water are marked. The sum is shown as a black line. In the 2D map, the white dashed line indicates the molecular diffusion coefficient of water,... Fig. 2.7.5 Two-dimensional D—T2 map for Berea sandstone saturated with a mixture of water and mineral oil. Figures on the top and the right-hand side show the projections of f(D, T2) along the diffusion and relaxation dimensions, respectively. In these projections, the contributions from oil and water are marked. The sum is shown as a black line. In the 2D map, the white dashed line indicates the molecular diffusion coefficient of water,...
The study of molecular diffusion in solution by NMR methods offers insights into a range of physical molecular properties. Different mobility rates or diffusion coefficients may also be the basis for the separation of the spectra of mixtures of small molecules in solution, this procedure being referred to as diffusion-ordered spectroscopy (DOSY) [271] (Figure 5.11). In this 2D experiment, the acquired FID is transformed with respect to 2 (the acquisition time). [Pg.339]


See other pages where Diffusion coefficient, mixtur is mentioned: [Pg.492]    [Pg.463]    [Pg.506]    [Pg.463]    [Pg.492]    [Pg.463]    [Pg.506]    [Pg.463]    [Pg.102]    [Pg.127]    [Pg.21]    [Pg.44]    [Pg.83]    [Pg.233]    [Pg.595]    [Pg.597]    [Pg.600]    [Pg.109]    [Pg.215]    [Pg.233]    [Pg.319]    [Pg.109]    [Pg.165]    [Pg.166]    [Pg.360]    [Pg.189]    [Pg.202]    [Pg.859]    [Pg.55]    [Pg.350]    [Pg.562]    [Pg.592]    [Pg.603]    [Pg.160]    [Pg.197]    [Pg.41]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Coefficient mixtures

© 2024 chempedia.info